Lecture notes
Prof. Arvind’s Lectures
Info
References:
- Combinatorics: Topics, Techniques, Algorithms, Peter Cameron (Main)
- Combinatorial Math, Douglass West
- Enumerative combinatorics vol1, by Richard Stanley
Stuff to cover: Schroder-Bernstein Theorem, recurrence relations, generating functions, IEP, Mobius inversions, permutation groups, Polya’s enumeration theorem, and should time permit, infinitorial combinatorics, graph theory, finite fields.
- DMAT_L2 ✅
- Cardinal numbers and arithmetic, comparing cardinalities, Schröder–Bernstein theorem
- DMAT_L3 ✅
- Zorn’s lemma, properties of cardinal numbers
- DMAT_L4 ✅
- Disjoint coverings, more properties of infinite cardinals
- DMAT_L5 ✅
- Graph colorings: another application of Zorn’s lemma
- DMAT_L6 ✅
- Picking objects, counting functions
- DMAT_L7 ✅
- Proof of Cayley’s theorem on trees using Zorn’s lemma
- DMAT_L8 ✅
- The twelve fold way, generating functions
- DMAT_L9 ✅
- Catalan numbers
- DMAT_L10
- Pigeon hole principle
- DMAT_L11
- Ramsey theory
- DMAT_L12 ✅
- PIE
- DMAT_L13
- Edge Reconstruction Conjecture, Möbius inversion, Dilworth’s theorem
- DMAT_L14 ✅
- Burnside’s Lemma
- DMAT_L15
- Polya’s Enumeration Theorem
Prof. Sinhababu’s Lectures
Info
References:
- Misha Lavrov’s Math 3322 notes
- Mark Muldoon’s MATH20902 notes
- https://arxiv.org/pdf/2308.04512
- Introduction to Graph Theory (Douglass B. West)
- A First Course in Graph Theory (Gary Chartrand, Ping Zhang)
- Discrete Mathematics Elementary and Beyond (L. Lovász, J. Pelikán, K. Vesztergombi)
- Graphs, Networks and Algorithms (Dieter Jungnickel)
- An invitation to discrete mathematics (Matousek J., Nesetril J.)
Stuff to cover: Graph theory, discrete probability, number theory, finite fields, applications to error correcting codes
- DMAT_L16 ✅
- Induction trap, induction on number of vertices, bipartite graphs
- DMAT_L17 ✅
- Growing trees
- DMAT_L18 ✅
- Spanning trees, Matrix tree theorem
- DMAT_L19 ✅
- Minimum spanning trees,
matroids
- Minimum spanning trees,
- DMAT_L20 ✅
- Connectivity, blocks, ear decomposition
- DMAT_L21
- Matchings in bipartite graphs, Hall’s marriage theorem, Edmonds matrix
- DMAT_L22 ✅
- Proof of Hall’s using M-alternating paths, some matroid stuff
- DMAT_L23 ✅
- Probabilistic proof example 1, Konig’s theorem, Tutte’s theorem
- DMAT_L24 ✅
- Probabilistic proof example 2, planar graphs
- DMAT_L25 ✅
- Greedy coloring algorithm, chromatic polynomial, coloring planar graphs, tournaments
- DMAT_L26
Tutorials
DMAT_T1 ✅
DMAT_Tn1 (where is a subsequence of )
DMAT_PS_Krutarth
DMAT_PS_Sunaina
DMAT_PS3b
DMAT_MatchingProblems
Assignments
DMAT_PS1
DMAT_AS1
DMAT_AS2
DMAT_AS3
Quizzes
tut - maximum number of edges possible in a graph which does not have a triangle in it??