CMI, Jan-Apr 2025, Clare D’Cruz
Artin (2011), Dummit & Foote (2004), Carter (2009), Herstein (1996)
Definition 1.
A Group is a groupoid with a single object.
Lecture Notes
- LEC ALG2 1 ✅
- Groups, examples of groups, subgroups
- LEC ALG2 2 ✅
- Symmetric groups, homomorphisms
- LEC ALG2 3 ✅
- Cosets, Lagrange’s theorem, quotient groups, normal subgroups
- LEC ALG2 4 ✅
- Isomorphisms, automorphisms and conjugation, first isomorphism theorem
- LEC ALG2 5 ✅
- Correspondence Theorem
- LEC ALG2 6 ✅
- Product of groups, third isomorphism theorem, Chinese remainder theorem
- LEC ALG2 7 ✅
- Double cosets, group actions
- LEC ALG2 8 ✅
- Orbit, stabilizer, kernel, groups acting on themselves, centralizer, normalizer, second isomorphism theorem
- LEC ALG2 9 ✅
- Orbit-stabilizer theorem, the class equation, p-groups, conjugacy in , more on automorphisms
- LEC ALG2 10
- Semidirect products
- LEC ALG2 11
- Sylow’s theorems, proofs from Herstein
- LEC ALG2 12
- Simplicity of
- LEC ALG2 13 ✅
- Free groups
- LEC ALG2 14
- Free abelian groups
- LEC ALG2 15
- Linear operators
- LEC ALG2 16
- Symmetries
Other notes
Normalizers and Conjugacy
Finding all subgroups of S4
Group of units mod p is cyclic
Assessments
TST ALG2 Quiz 1
TST ALG2 Quiz 2
TST ALG2 EndSem
Tutorials
References
Artin, M. (2011). Algebra (2. ed). Pearson Education, Prentice Hall.
Carter, N. C. (2009). Visual Group Theory. Mathematical Association of America.
Dummit, D. S., & Foote, R. M. (2004). Abstract Algebra (3rd ed). Wiley.
Herstein, I. N. (1996). Abstract Algebra (3rd ed). Prentice-Hall.