CMI, Jan-Apr 2025, Clare D’Cruz
Artin (2011), Dummit & Foote (2004), Carter (2009), Herstein (1996)

Definition 1.

A Group is a groupoid with a single object.


Lecture Notes

  • LEC ALG2 1
    • Groups, examples of groups, subgroups
  • LEC ALG2 2
    • Symmetric groups, homomorphisms
  • LEC ALG2 3
    • Cosets, Lagrange’s theorem, quotient groups, normal subgroups
  • LEC ALG2 4
    • Isomorphisms, automorphisms and conjugation, first isomorphism theorem
  • LEC ALG2 5
    • Correspondence Theorem
  • LEC ALG2 6
    • Product of groups, third isomorphism theorem, Chinese remainder theorem
  • LEC ALG2 7
    • Double cosets, group actions
  • LEC ALG2 8
    • Orbit, stabilizer, kernel, groups acting on themselves, centralizer, normalizer, second isomorphism theorem
  • LEC ALG2 9
    • Orbit-stabilizer theorem, the class equation, p-groups, conjugacy in , more on automorphisms
  • LEC ALG2 10
    • Semidirect products
  • LEC ALG2 11
    • Sylow’s theorems, proofs from Herstein
  • LEC ALG2 12
    • Simplicity of
  • LEC ALG2 13
    • Free groups
  • LEC ALG2 14
    • Free abelian groups
  • LEC ALG2 15
    • Linear operators
  • LEC ALG2 16
    • Symmetries

Group theory questions

Other notes

Normalizers and Conjugacy
Finding all subgroups of S4
Group of units mod p is cyclic

Assessments

TST ALG2 Quiz 1
TST ALG2 Quiz 2
TST ALG2 EndSem

Tutorials

TUT ALG2 4


References

Artin, M. (2011). Algebra (2. ed). Pearson Education, Prentice Hall.
Carter, N. C. (2009). Visual Group Theory. Mathematical Association of America.
Dummit, D. S., & Foote, R. M. (2004). Abstract Algebra (3rd ed). Wiley.
Herstein, I. N. (1996). Abstract Algebra (3rd ed). Prentice-Hall.