CMI, Aug-Nov 2025, Krishna Hanumanthu
Ramadas (n.d.), Spivak (1965) (errata), Rudin (1976), Apostol (1985), Pugh (2015), Zorich (2016)
Lectures
Integration in
LEC CAL2 2 ✅ Review
LEC CAL2 3, 4 ✅ Integration on rectangles
LEC CAL2 5 ✅ Integration on Jordan measurable sets
LEC CAL2 6 ✅ Fubini’s theorem
Intermezzo: CAL 1 review
LEC CAL2 7 ✅ Partitions of unity
LEC CAL2 8 Change of variables
LEC CAL2 9 Tensor products
LEC CAL2 10 Differential forms
LEC CAL2 11
Tutorials
TUT CAL2 1 has measure zero in
TUT CAL2 2 Sard’s Theorem
TUT CAL2 3 The Rank Theorem
TUT CAL2 4
If is continuous, and , then
References
Apostol, T. M. (1985). Mathematical Analysis (2d ed). Narosa.
Pugh, C. C. (2015). Real Mathematical Analysis. Springer International Publishing. https://doi.org/10.1007/978-3-319-17771-7
Ramadas, T. R. (n.d.). (MULTIDIMENSIONAL INTEGRAL) CALCULUS.
Rudin, W. (1976). Principles of Mathematical Analysis (3d ed). McGraw-Hill.
Spivak, M. (1965). Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus. Addison-Wesley publ.
Zorich, V. A. (2016). Mathematical Analysis 2 (R. Cooke & O. Paniagua, Trans.; Second edition). Springer.