V1⊗V2⊗⋯⊗Vn≅{V1∗×⋯×Vn∗multilinearK}, where K is the base field.
[!Definition]
⋀KV∗:={V×⋯×Vmultilinear, alternatingK}.
⋀0V∗=K.
⋀1V∗=V∗.
⋀2V∗ is the space of skew symmetric forms.
[!Definition]
Let i=1,2. Let wi∈⊗miV∗.
w1∧w2(v1,…,vm1+m2)=∑r∈Sh(m1,m2)(−1)rw1(vr1,…,vrm1)w2(vrm1+1,…,vrm1+m2).
Sh(m1,m2)={r∈Sm1+m2:r1<⋯<rm1,rm1+1<⋯<rm1+m2}.
(−1)r:=sgn(r).
w1∧w2∧w3 is similarly defined.
[!Proposition]
(w1∧w2)∧w3=w1∧(w2∧w3).
w1∧w2=(−1)m1m2w2∧w1.
[!Lemma]
Sh(m1,m2,m3)∼Sh(m1+m2,m3)×Sh(m1,m2).
There is a natural inclusion
⋀mV∗i⨂mV∗.
Define Alt:⨂mV∗→⨂mV∗ by
Alt(w)=∣Sm∣1σ∈Sm∑(−1)σ(σ.w),
where (σ.w)(v1,…,vm)=w(vσ(1),…,vσ(m)).
[!Proposition]
Alt is a projector onto ⋀mV∗, that is,
- Im (Alt)=⋀mV∗.
- Alt∘Alt=Alt