CMI, Aug-Nov 2025, R Srinivasan
Kumaresan (2005), Rudin (1976), Royden & Fitzpatrick (2014), Pugh (2015), Lecture recordings
Lectures
Metric spaces
LEC ANA2 1 ✅ Sequence spaces: is a NLS
LEC ANA2 2 Examples of metric spaces
Completeness, Separability, Compactness, Equicontinuity
LEC ANA2 3 ✅ , are Banach spaces, some comments about
LEC ANA2 4 ✅ Completeness of , uniqueness of completion
LEC ANA2 5 ✅ Alternate construction of completion, separability
LEC ANA2 6 ✅ Second countability, compactness
LEC ANA2 7 ✅ Equicontinuity, Arzelà–Ascoli theorem
Baire’s Theorem
LEC ANA2 8 ✅ Banach’s Contraction principle, Baire Category theorem
LEC ANA2 9 ✅ Continuous nowhere differentiable functions are second category in .
LEC ANA2 10 ✅ More applications of Baire’s theorem: Discontinuities of pointwise limit of continuous functions, Uniform boundedness theorem
Stone-Weierstrass Theorem
LEC ANA2 11 ✅ Stone-Weierstrass for and
LEC ANA2 12 ✅ Stone-Weierstrass for locally compact metric spaces, ¿ææ÷¿Æßƒ≈ç
Connected spaces
LEC ANA2 13 ✅ Connectedness, separations
LEC ANA2 14 ✅ Path connectedness
LEC ANA2 15 ✅ is connected, The Cantor set
Fourier analysis
LEC ANA2 16 ✅ Hilbert spaces
LEC ANA2 17 ✅ The Fourier transform, failure of pointwise convergence of the Fourier series
LEC ANA2 18 ✅ Convergence of Fourier series
LEC ANA2 19 ✅ Fejér’s theorem
TST ANA2 Quiz 1
TST ANA2 Quiz 2
TST ANA2 Quiz 4
ANA2 Quiz 5