CMI, Aug-Nov 2025, R Srinivasan
Kumaresan (2005), Rudin (1976), Royden & Fitzpatrick (2014), Pugh (2015), Lecture recordings


Lectures

Metric spaces

LEC ANA2 1 ✅ Sequence spaces: is a NLS
LEC ANA2 2 Examples of metric spaces

Completeness, Separability, Compactness, Equicontinuity

LEC ANA2 3, are Banach spaces, some comments about
LEC ANA2 4 ✅ Completeness of , uniqueness of completion
LEC ANA2 5 ✅ Alternate construction of completion, separability
LEC ANA2 6 ✅ Second countability, compactness
LEC ANA2 7 ✅ Equicontinuity, Arzelà–Ascoli theorem

Baire’s Theorem

LEC ANA2 8 ✅ Banach’s Contraction principle, Baire Category theorem
LEC ANA2 9 ✅ Continuous nowhere differentiable functions are second category in .
LEC ANA2 10 ✅ More applications of Baire’s theorem: Discontinuities of pointwise limit of continuous functions, Uniform boundedness theorem

Stone-Weierstrass Theorem

LEC ANA2 11 ✅ Stone-Weierstrass for and
LEC ANA2 12 ✅ Stone-Weierstrass for locally compact metric spaces, ¿ææ÷¿Æßƒ≈ç

Connected spaces

LEC ANA2 13 ✅ Connectedness, separations
LEC ANA2 14 ✅ Path connectedness
LEC ANA2 15 is connected, The Cantor set

Fourier analysis

LEC ANA2 16 ✅ Hilbert spaces
LEC ANA2 17 ✅ The Fourier transform, failure of pointwise convergence of the Fourier series
LEC ANA2 18 ✅ Convergence of Fourier series
LEC ANA2 19 ✅ Fejér’s theorem


AS ANA2 1
AS ANA2 2
AS ANA2 3

TST ANA2 Quiz 1
TST ANA2 Quiz 2
TST ANA2 Quiz 4
ANA2 Quiz 5

TUT ANA2 1


References

Kumaresan, S. (2005). Topology of Metric Spaces. Alpha Science International Ltd.
Pugh, C. C. (2015). Real Mathematical Analysis (2nd ed.). Springer International Publishing. https://doi.org/10.1007/978-3-319-17771-7
Royden, H. L., & Fitzpatrick, P. (2014). Real Analysis (4th edition, updated printing). Pearson.
Rudin, W. (1976). Principles of Mathematical Analysis (3d ed). McGraw-Hill.