CMI, Jan-Apr 2025, M. Sundari
Royden & Fitzpatrick (2014), Ghorpade & Limaye (2018), Apostol (1985), Rudin (1976)


Lecture notes

Normed linear spaces

  • LEC CAL1 1
    • The p-norm
  • LEC CAL1 2
    • Equivalence of p-norms
  • LEC CAL1 3
    • Equivalence of all norms on a finite dimensional normed linear space
  • LEC CAL1 4
    • Example of complete normed linear space, inner product spaces (mostly stuff covered in ALG1)
  • LEC CAL1 5
    • Examples of finding limits in

Metric space topology

See Royden & Fitzpatrick (2014)

  • LEC CAL1 6
    • Cantor intersection theorem, constructing the completion of a metric space
  • LEC CAL1 7
    • Finite intersection property, total boundedness, characterization of compact sets
  • LEC CAL1 8
    • Extreme value theorem, Lebesgue covering theorem
  • LEC CAL1 9
    • Separable metric spaces, Lindelöf covering theorem, Baire category theorem
  • LEC CAL1 10
    • Banach contraction principle

Multivariable functions

See Ghorpade & Limaye (2018) (please don’t)

  • LEC CAL1 11
    • Order properties of , Intervals, disks, and bounded sets
  • LEC CAL1 12
    • Monotonicity and Bimonotonicity, bounded variation and bivariation
  • LEC CAL1 13
    • Convexity and Concavity, paths, local extrema and saddle points
  • LEC CAL1 14
    • Intermediate value property

Multivariable calculus

See Apostol (1985) ch12 & ch13, Rudin (1976) ch9

  • LEC CAL1 15
    • Partial and directional derivatives
  • LEC CAL1 16
    • Total derivatives, the Jacobian matrix
  • LEC CAL1 17
    • The chain rule
  • LEC CAL1 18
    • The mean value theorem for differentiable functions
  • LEC CAL1 19
    • Sufficient conditions for differentiability and equality of mixed partial derivatives
  • LEC CAL1 20
    • Taylor’s formula for functions from to
  • LEC CAL1 21
    • Inverse function theorem
  • LEC CAL1 22
    • Implicit function theorem
  • LEC CAL1 23
    • Extrema of real valued functions
  • LEC CAL1 24
    • Extremum problems with side conditions: Lagrange multipliers

References

Apostol, T. M. (1985). Mathematical Analysis (2d ed). Narosa.
Ghorpade, S., & Limaye, B. V. (2018). A Course in Calculus and Real Analysis (Second edition). Springer.
Royden, H. L., & Fitzpatrick, P. (2014). Real Analysis (4th edition, updated printing). Pearson.
Rudin, W. (1976). Principles of Mathematical Analysis (3d ed). McGraw-Hill.