
Analysis 1 HW 4

2.6

Definitions
E ⊂ X.
E ′ is the set of all limit points of E.
Ē = E ∪ E ′.

Prove that E ′ is closed.

Proof. To show E ′ is closed, we will show that E ′ contains all of its limit points. Let p be a
limit point E ′. We will show that p is a limit point of E, which in turn implies p ∈ E ′. Let
ϵ > 0 be arbitrary. B ϵ

2
(p) ∩ E ′ contains at least one other point q other than p. Also, since

q is a limit point of E, B ϵ
2
(q) ∩ E contains at least one point r other than q.

d(p, r) ≤ d(p, q) + d(q, r)

<
ϵ

2
+

ϵ

2
= ϵ.

So, for every ϵ > 0, we have r ∈ Bϵ(p) ∩ E, r ̸= p. Therefore, p is a limit point of E.

Prove that E and Ē have the same limit points.

Proof. It is clear that if p is a limit point of E, it must also be a limit point of Ē. Going the
other way, let p be a limit point of Ē. Let ϵ > 0 be arbitrary. Then, B ϵ

2
(p) ∩ Ē contains at

least one q other than p. If q ∈ E, we are done. If q ̸∈ E, it must be the case that q ∈ E ′,
i.e, q is a limit point of E. Thus, B ϵ

2
(q) ∩ E must contain a point r other than q. Now,

d(p, r) ≤ d(p, q) + d(q, r) < ϵ
2
+ ϵ

2
= ϵ. So, E and Ē have the same limit points.

Do E and E ′ always have the same limit points?

No. Consider E =
{

1
n
| n ∈ N

}
. E ′ = {0}. The set of limit points of E ′ is the null set.

2.29

Prove that every open set in R1 is a union of an at most countable collection of
disjoint segments.

Proof. Let U be an open set in R. Let x, y, z ∈ U . We define x ∼ y if (x ≤ y and [x, y] ⊂ U)
or (y < x and [y, x] ⊂ U). This relation is
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1. reflexive, since x ∼ x ([x, x] ⊂ U),

2. symmetric, since x ∼ y =⇒ y ∼ x, and

3. transitive, since x ∼ y and y ∼ z =⇒ x ∼ z.

Thus, this relation induces a partition P on U . We know that all elements of a partition are
disjoint. To show that every Q ∈ P is a segment, consider p ∈ Q. Since U is open, r > 0
exists such that Br(p) ⊂ U . For every b ∈ Br(p), if b ≤ r we have [b, r] ⊂ Br(p) ⊂ U , and if
b > r, we have [r, b] ⊂ Br(p) ⊂ U .So, b ∼ p, i.e, b and p must belong to the same equivalence
class, Q. It follows that Br(p) ⊂ Q. Therefore, each Q ∈ P much be a segment in R.

Now, for every Qi ∈ P , define qi ≡ (inf Qi + supQi)/2. Since Qi are disjoint, each Qi has a
unique qi associated with it. Thus, we have P ∼ Q′ ⊂ Q. Since Q is countable, P is at most
countable.

4.2

Definitions
f : X → Y is continuous, where X and Y are metric spaces.

Prove that f(E) ⊂ f(E) for every set E ⊂ X.

Proof. Let p ∈ f(E). Then, there exists a q in E such that f(q) = p. If q ∈ E, we are done.
If q ̸∈ E, q must be a limit point of E. So, there exists a sequence (qn) in E which converges
to q. Since f is continuous, (f(qn)) must converge to f(q). Thus, f(q) is a limit point of
f(E), and so f(q) = p ∈ f(E).

Show, by an example, that f(E) can be a proper subset of f(E).

Consider f : N → R, f(n) = 1
n
. Since N consists of only isolated points, f is continuous.

Also, N = N, since N is a closed set. Thus, f(N) = f(N) =
{

1
n
| n ∈ N

}
. However, 0 is a

limit point of f(N). Thus, 0 ∈ f(N), but 0 ̸∈ f(N).

4.4

Definitions
f, g : X → Y are continuous, where X and Y are metric spaces.
E ⊂ X is dense in X.

Prove that f(E) is dense in f(X).
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Proof. Let p ∈ f(X). There exists q ∈ X such that f(q) = p. Since E is dense in X, either
q ∈ E or q is a limit point of E. If q ∈ E, f(q) ∈ f(E). If q is a limit point of E, there exists
a sequence (qn) in E which converges to q. Since f is continuous, (f(qn)) must converge to
f(q). Thus, f(q) is a limit point of f(E). Therefore, either p ∈ f(E), or p is a limit point of
f(E), i.e, f(E) is dense in f(X).

If g(p) = f(p) for all p ∈ E, prove that g(p) = f(p) for all p ∈ X.

Proof. Again, E being dense in X tells us that either p ∈ E or p is a limit point of E. If
p ∈ E, the result is true by hypothesis. In the latter case, there exists a sequence (pn) in
E that converges to p. Since f and g are continuous, (f(pn)) → f(p) and (g(pn)) → g(p).
Also, f(pn) = g(pn) for all n ∈ N, by hypothesis. Since the limit of a sequence is unique, it
follows that f(p) = g(p).

4.7

Definitions
f, g : R2 → R.

f(x, y) =

{
0 (x, y) = (0, 0)
xy2

x2+y4
(x, y) ̸= (0, 0)

g(x, y) =

{
0 (x, y) = (0, 0)
xy2

x2+y6
(x, y) ̸= (0, 0)

Prove that f is bounded on R2.

Proof. We will show that ∣∣∣∣ xy2

x2 + y4

∣∣∣∣ ≤ 1

2

for all (x, y) ∈ R2. On applying the AM-GM inequality on x2 and y4, we get

x2 + y4

2
≥

√
x2y4 = |x|y2

=⇒ |x|y2

x2 + y4
=

∣∣∣∣ xy2

x2 + y4

∣∣∣∣ ≤ 1

2
.

Prove that g is unbounded on every neighborhood of (0, 0).

Proof. Let ϵ > 0. We will show that there exists (x, y) ∈ Bϵ((0, 0),R2) such that

|g(x, y)| =
∣∣∣∣ xy2

x2 + y6

∣∣∣∣ > M (1)
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for all M > 0. Assume x, y > 0.

xy2

x2 + y6
> M

=⇒ x2 + y6

xy2
=

x

y2
+

y4

x
<

1

M

Define α ≡ x/y2.

α +
y2

α
<

1

M
.

Let α = 1
2M

. Let us attempt to solve for y.

1

2M
+ 2My2 <

1

M

y <
1

2M

Setting y = 1
4M

will suffice. Now, we can solve for x:

x =
y2

2M
=

1

32M3

Thus,
(

1
32M3 ,

1
4M

)
will satisfy (1). This can be easily verified:

g

(
1

32M3
,

1

4M

)
=

(
1

4M

)2( 1
32M3

)(
1

4M

)6
+
(

1
32M3

)2 =
8M

5
> M.

Now, if |x| < ϵ/
√
2 and |y| < ϵ/

√
2, it must be that (x, y) ∈ Bϵ(0, 0). There exist k1 ≥ 1

and k2 ≥ 1 such that 1
32(k1M)3

< ϵ√
2
and 1

4k2M
< ϵ√

2
. Let k be the greater of the two. Since

being greater than kM ensures being greater than M , we have found the (x, y) we were in
the search of:

(x, y) =

(
1

32(kM)3
,

1

4kM

)
.

Prove that f is not continuous at (0, 0).

Proof. Since (0, 0) is a limit point of R2, we must have lim(x,y)→(0,0) f(x, y) = f(0, 0) = 0 for
f to be continuous at (0, 0). If we plug x = y2 into the definition of f , we get 1

2
. Thus, for

ϵ < 1
2
, it is not possible to find a δ > 0 such that |(x, y)| < δ =⇒ |f(x, y)| < ϵ, since we will

always be able to find (a, b) ∈ Bδ(0, 0) such that a = b2.
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