Analysis 1 HW 4

2.6

Definitions

EcCX.

E’ is the set of all limit points of F.
E=EUF.

Prove that E’ is closed.

Proof. To show E' is closed, we will show that E’ contains all of its limit points. Let p be a
limit point £’. We will show that p is a limit point of F, which in turn implies p € E’. Let
€ > 0 be arbitrary. Bc (p) N E’ contains at least one other point ¢ other than p. Also, since
q is a limit point of F, Bg(q) N E contains at least one point r other than q.

d(p,r) < d(p,q) +d(q,r)
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So, for every € > 0, we have r € B.(p) N E, r # p. Therefore, p is a limit point of E. O
Prove that F and E have the same limit points.

Proof. It is clear that if p is a limit point of E, it must also be a limit point of E. Going the
other way, let p be a limit point of E. Let € > 0 be arbitrary. Then, B (p) N E contains at
least one g other than p. If ¢ € E, we are done. If ¢ ¢ F, it must be the case that ¢ € F’,
i.e, ¢ is a limit point of E. Thus, B:(g) N E must contain a point 7 other than g. Now,

d(p,7) <d(p,q) +d(q,7) < §+ 5 =¢c. So, E and F have the same limit points. O

Do E and E’ always have the same limit points?

No. Consider E = {1 | n € N}. E' = {0}. The set of limit points of £’ is the null set.

2.29

Prove that every open set in R! is a union of an at most countable collection of
disjoint segments.

Proof. Let U be an open set in R. Let z,y,z € U. We define z ~ y if (x <y and [z,y] C U)
or (y <z and [y, z] C U). This relation is



1. reflexive, since x ~ z ([z,z] C U),
2. symmetric, since x ~y = y ~ x, and

3. transitive, since x ~y and y ~ 2 = = ~ 2.

Thus, this relation induces a partition P on U. We know that all elements of a partition are
disjoint. To show that every ) € P is a segment, consider p € (). Since U is open, r > 0
exists such that B,.(p) C U. For every b € B,(p), if b < r we have [b,r] C B,.(p) C U, and if
b > r, we have [r,b] C B,.(p) C U.So, b ~ p, i.e, b and p must belong to the same equivalence
class, Q. It follows that B,(p) C Q. Therefore, each () € P much be a segment in R.

Now, for every @; € P, define ¢; = (inf Q; + sup @;)/2. Since @); are disjoint, each ); has a
unique ¢; associated with it. Thus, we have P ~ Q' C Q. Since Q is countable, P is at most
countable. O

4.2

Definitions
f: X — Y is continuous, where X and Y are metric spaces.

Prove that f(E) C f(F) for every set F C X.

Proof. Let p € f(E). Then, there exists a ¢ in E such that f(q) = p. If ¢ € E, we are done.
If ¢ ¢ FE, ¢ must be a limit point of E. So, there exists a sequence (g,) in E which converges
to ¢. Since f is continuous, (f(g,)) must converge to f(q). Thus, f(¢) is a limit point of

f(E), and so f(q) = p € f(E). =

Show, by an example, that f(E) can be a proper subset of f(E).

Consider f : N — R, f(n) = % Since N consists of only isolated points, f is continuous.

Also, N = N, since N is a closed set. Thus, f(N) = f(N) = {2 | n € N}. However, 0 is a
limit point of f(N). Thus, 0 € f(N), but 0 ¢ f(N).

4.4

Definitions
f,g: X — Y are continuous, where X and Y are metric spaces.
E C X is dense in X.

Prove that f(F) is dense in f(X).



Proof. Let p € f(X). There exists ¢ € X such that f(q) = p. Since E is dense in X, either
q € E or ¢is alimit point of E. If ¢ € E, f(q) € f(E). If ¢ is a limit point of F, there exists
a sequence (g,) in E which converges to ¢. Since f is continuous, (f(g,)) must converge to
f(q). Thus, f(q) is a limit point of f(E). Therefore, either p € f(F), or p is a limit point of
f(E), i.e, f(E) is dense in f(X). O

If g(p) = f(p) for all p € E, prove that g(p) = f(p) for all p € X.

Proof. Again, E being dense in X tells us that either p € E or p is a limit point of £. If
p € E, the result is true by hypothesis. In the latter case, there exists a sequence (p,) in
E that converges to p. Since f and g are continuous, (f(p,)) — f(p) and (g(pn)) — g9(p).
Also, f(pn) = g(pn) for all n € N, by hypothesis. Since the limit of a sequence is unique, it
follows that f(p) = g(p). O

4.7

Definitions
f,g:R* = R,
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Prove that f is bounded on R2.

Proof. We will show that

2 1

Ty
22 + ot §§

for all (x,y) € R% On applying the AM-GM inequality on z? and y*, we get
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Prove that ¢ is unbounded on every neighborhood of (0,0).
Proof. Let € > 0. We will show that there exists (z,y) € B.((0,0), R?) such that
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for all M > 0. Assume z,y > 0.

Define a = z/y*.

Let a = 53+. Let us attempt to solve for y.
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Setting y = 437 will suffice. Now, we can solve for x:
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Thus, (53575, 777) Will satisfy (1). This can be easily verified:

g( | 1):((%?)(32&3) _8M

32M37 AM + (55 )2 5
32M3

Now, if |z| < €/+/2 and |y| < e/\/_ it must be that (z,y) € B.(0,0). There exist k; > 1
and ko > 1 such that m < \/i and 4k2M \/Li Let k be the greater of the two. Since
being greater than kM ensures being greater than M, we have found the (z,y) we were in

the search of:

(z,9) = (32(1c1M)3’ 4k1M) '

Prove that f is not continuous at (0,0).

Proof. Since (0,0) is a limit point of R?, we must have lim, 40,0 f(z,y) = f(0,0) = 0 for
f to be continuous at (0,0). If we plug # =y into the definition of f, we get 3. Thus, for
€ < 3, it is not possible to find a § > 0 such that |(z,y)| < = [f(z,y)| < ¢, since we will
always be able to find (a,b) € Bs(0,0) such that a = b°. O



