Analysis 1 HW 3

1

Definitions

 (x_n) is a sequence of real numbers satisfying $3x_{n+1} = x_n^3 - 2$ for all $n \in \mathbb{N}$.

Solution

If $(x_n) \to l$ for some l, then

$$\lim_{n \to \infty} (3x_{n+1}) = \lim_{n \to \infty} (x_n^3 - 2)$$
$$\implies 3l = l^3 - 2$$

courtesy the algebraic limit theorem. This yields $l \in \{2, -1\}$.

Now, consider the successive differences:

$$x_{n+1} - x_n = \frac{x_n^3 - 3x_n - 2}{3} \tag{1}$$

- (i) If $x_i > 2$, $x_i^3 3x_i 2 = x_i(x_i^2 3) 2 > 2(4 3) 2 = 0$. So, $x_{i+1} x_i > 0$. Therefore, if $x_1 > 2$, the sequence is increasing and cannot converge to 2 or -1, so it must diverge.
- (ii) If $x_i = 2$, $x_{i+1} x_i = 0$. Thus, if $x_1 = 2$ the sequence is constant at 2, and it converges to 2.
- (iii) If $-1 < x_i < 2$, we make the following claims:
 - (a) Claim: If $-1 < x_i < 2$, then $x_{i+1} x_i \le 0$. It suffices to show that $y^3 - 3y - 2 \le 0$ for all y < 2. Consider the expression t(6-t) - 9, t > 0. If t > 6, it is clear that t(6-t) - 9 < 0. If $0 < t \le 6$, t and 6-t are non negative. From the AM-GM inequality, we have $9 \le t(6-t) \Longrightarrow t(6-t) - 9 \le 0$. Thus, $t(t(6-t) - 9) \le 0$ is true for all t > 0. Now, let y = 2-t. Plugging t = 2-y into the above inequality, we get $y^3 - 3y - 2 \le 0$ for all y < 2.
 - (b) Claim: If $-1 < x_i < 2$, then $-1 < x_{i+1} < 2$.

$$x_i < 2 \implies x_i^3 < 8 \implies x_i^3 - 2 < 6 \implies \frac{x_i^3 - 2}{3} = x_{i+1} < 2$$
$$-1 < x_i \implies -1 < x_i^3 \implies -3 < x_i^3 - 2 \implies -1 < \frac{x_i^3 - 2}{3} = x_{i+1}$$

Thus, if x_1 lies between -1 and 2, then (x_n) is bounded and monotone decreasing. By the monotone convergence theorem, the sequence must converge, and since it cannot converge to 2, it must converge to -1.

(iv) If $x_i = -1$, $x_{i+1} - x_i = 0$. Thus, if $x_1 = -1$ the resulting sequence is constant at -1, and it converges to -1.

(v) For $x_i < -1$, we have $x_i^3 - 3x_i - 2 \le 0$ from (iii)(a) (while claimed for $-1 < x_i < 2$, we proved it for all $x_i < 2$). Thus, for $x_1 < -1$ the sequence is decreasing. Since the sequence cannot converge to either -1 or 2, it must diverge to negative infinity.

$\mathbf{2}$

Definitions

 $\{(a_i, b_i)\}\$ is a sequence in \mathbb{R}^2 with $a_i \leq b_i$ such that for each i, the closed interval $[a_i, b_i]$ contains the closed interval $[a_{i+1}, b_{i+1}]$. sup $a_n = \sup\{a_k \mid k \geq n\}$.

Solution

(a) To prove: $\bigcap_i [a_i, b_i] \neq \emptyset$.

Proof. Consider the sequences (a_n) and (b_n) independently. Since $[a_i, b_i]$ always contains $[a_{i+1}, b_{i+1}]$, (a_n) must be monotone increasing, and (b_n) must be monotone decreasing. Also, every term of (b_n) is an upper bound for (a_n) , and every term of (a_n) is a lower bound for (b_n) . So, $\alpha = \sup a_n$ and $\beta = \inf b_n$ must exist.

Claim: $\alpha \leq \beta$.

FTSOC, assume $\beta < \alpha$. From the definition of supremum, there must exist an a_{i_1} such that $\beta < a_{i_1} < \alpha$. From the definition of infimum, there must exist a b_{i_2} such that $\beta < b_{i_2} < a_{i_1} < \alpha$. This contradicts the fact that every term of (b_n) is an upper bound for (a_n) .

Thus, the interval $[\alpha, \beta]$ is always non empty.

Claim: $\bigcap_i [a_i, b_i] = [\alpha, \beta]$ Every element in $[\alpha, \beta]$ is an upper bound for (a_i) , and a lower bound for (b_i) . Thus, $[\alpha, \beta] \subset [a_i, b_i]$ for all i, i.e, $[\alpha, \beta] \subset \bigcap_i [a_i, b_i]$. If $k \in \bigcap_i [a_i, b_i]$, k is an upper bound of (a_n) and k is a lower bound for (b_n) . So, $k \ge \alpha$ and $k \le \beta$. Thus, $k \in [\alpha, \beta]$.

Thus,
$$\bigcap_i [a_i, b_i] = [\alpha, \beta] \neq \emptyset.$$

(b) To prove: $|\bigcap_i [a_i, b_i]| = 1 \iff \lim_{n \to \infty} (a_n - b_n) = 0.$

Proof. We know that if a sequence is bounded and increasing, it must converge to the least upper bound of its range. Thus, $(a_n) \to \alpha$. Similarly, if a sequence is bounded and decreasing, it must converge to the greatest lower bound of its range. Thus, $(b_n) \to \beta$.

Thus, we can say

$$\left|\bigcap_{i} [a_{i}, b_{i}]\right| = 1$$
$$\iff \alpha = \beta$$
$$\iff \lim_{n \to \infty} (a_{n} - b_{n}) = 0$$

_	_	

 $\Rightarrow \leftarrow$

3

Definitions

 (a_n) and (b_n) are sequences in \mathbb{R} . sup $a_n = \sup\{a_k \mid k \ge n\}$.

Solution

Lemma 3.1. $\sup(a_n + b_n) \leq \sup a_n + \sup b_n$ for all $n \in \mathbb{N}$

Proof. If $\sup(a_n)$ or $\sup(b_n)$ is ∞ , the inequality is trivially true. Thus, assume $\sup(a_n)$, $\sup(b_n) \in \mathbb{R}$.

FTSOC, assume $\sup a_n + \sup b_n < \sup(a_n + b_n)$. There must exist $a_i + b_i$, $i \ge n$ such that $\sup a_n + \sup b_n < a_i + b_i < \sup(a_n + b_n)$. We know that $\sup a_n \ge a_k$ for all $k \ge n$. So, we have

$$(\sup a_n - a_i) + \sup b_n < b_i$$
$$\implies \sup b_n < b_i,$$

which is impossible.

Lemma 3.2. If $(a_n) \to a \in \mathbb{R} \cup \{\infty, -\infty\}$, $(b_n) \to b \in \mathbb{R} \cup \{\infty, -\infty\}$, and $a_n \leq b_n$ for all $n \in \mathbb{N}$, then $a \leq b$.

Proof. If $(b_n) \to \infty$, the inequality is trivially true. If $(a_n) \to \infty$, it must be the case that $(b_n) \to \infty$. Thus, assume $a, b \in \mathbb{R}$.

FTSOC, assume b < a. Let $\epsilon = \frac{a-b}{2}$. Then, there exists an integer N_1 such that for all $n \ge N_1$, $|a_n - a| < \epsilon$. Similarly, there exists an integer N_2 such that for all $n \ge N_2$, $|b_n - b| < \epsilon$. Let N be the greater of N_1 and N_2 . Thus, for all $n \ge N$, $b_n \in \left(\frac{3b-a}{2}, \frac{a+b}{2}\right)$ and $a_n \in \left(\frac{a+b}{2}, \frac{3a-b}{2}\right)$, which implies $a_n > b_n$ for all $n \ge N$.

To prove: $\limsup_{n\to\infty} (a_n + b_n) \leq \limsup_{n\to\infty} a_n + \limsup_{n\to\infty} b_n$, provided the sum on the right is not of the form $\infty - \infty$.

Proof. Consider the sequences $(\sup a_n + \sup b_n)$, and $(\sup(a_n + b_n))$. From Lemma 3.1, we have $\sup(a_n + b_n) \leq \sup a_n + \sup b_n$ for all $n \in \mathbb{N}$. Also, it is clear the the suprema of tails of a sequence form a monotone decreasing sequence. Since all sequences are bounded in the extended reals, it follows these sequences must converge to a value in the extended reals. Thus, we can use Lemma 3.2:

$$\sup(a_n + b_n) \le \sup a_n + \sup b_n$$

$$\implies \lim_{n \to \infty} (\sup(a_n + b_n)) \le \lim_{n \to \infty} (\sup a_n + \sup b_n) = \lim_{n \to \infty} (\sup a_n) + \lim_{n \to \infty} (\sup b_n)$$

$$\implies \limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$$

4

Definitions

 (p_n) and (q_n) are Cauchy sequences in a metric space (X, d).

Solution

To prove: The sequence $(d(p_n, q_n))$ converges.

Proof. For any m, n, from the triangle inequality, we have

$$d(p_n, q_n) \le d(p_n, p_m) + d(p_m, q_n)$$

and

$$d(p_m, q_n) \le d(p_m, q_m) + d(q_m, q_n).$$

Combining the two, we get

$$d(p_n, q_n) \le d(p_n, p_m) + d(p_m, q_m) + d(q_m, q_n) \implies |d(p_n, q_n) - d(p_m, q_m)| \le d(p_n, p_m) + d(q_m, q_n).$$

Let $\epsilon > 0$ be arbitrary. Since (p_n) and (q_n) are Cauchy sequences, there must exist integers N_1 and N_2 such that for all $m, n \ge N_1$, $d(p_n, p_m) < \frac{\epsilon}{2}$ and for all $m, n \ge N_2$, $d(q_n, q_m) < \frac{\epsilon}{2}$ respectively. Let N be the larger of N_1 and N_2 . Thus,

$$|d(p_n, q_n) - d(p_m, q_m)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

for all $n \geq N$. This implies that the sequence $(d(p_n, q_n))$ is Cauchy. In \mathbb{R} , a sequence is Cauchy if and only if it is convergent (to a limit in \mathbb{R}).

Definitions

 (p_n) is a sequence in \mathbb{R} . For a < b, let $\zeta_{a,b}$ be the [a, b]-crossing number of (p_n) .

Solution

To prove: $\zeta_{a,b} \in \mathbb{N}_0 \quad \forall \ a < b \iff (p_n) \to p \in \mathbb{R} \cup \{\infty, -\infty\}.$

Proof. We will call a sequence with the property on the left (having finite $\zeta_{a,b}$ for all a < b) a "cross-bounded" sequence.

Proof of convergent \implies cross-bounded

We will prove the contrapositive: not cross-bounded \implies not convergent. If a sequence is not cross-bounded, $\zeta_{a,b} = \infty$ for some a < b. This implies that for all N, there exists $d_n > N$ such that $p_{d_n} < a$, and there exists $u_n > N$ such that $p_{u_n} > b$. This allows us to make the following deductions:

- (i) For $\epsilon = b a$, there does not exist an N such that for all $m, n \ge N$, $|p_m p_n| < \epsilon$. This tells us that (p_n) is not Cauchy, which implies (p_n) is not convergent in \mathbb{R} .
- (ii) For all M > a, there does not exist an N such that for all $n \ge N$, $p_n \ge M$. Thus, (p_n) cannot converge to ∞ .
- (iii) For all m < b, there does not exist an N such that for all $n \ge N$, $p_n \le m$. Thus, (p_n) cannot converge to $-\infty$.

Proof of cross-bounded \implies convergent

We can rephrase the notion of being cross-bounded like so: for every a < b, there either exists an N such that for all $n \ge N$, $p_n \ge a$, or there exists an N such that for all $n \ge N$, $p_n \le b$. In other words, eventually a becomes a lower bound for tails of (p_n) , or b becomes an upper bound for tails of (p_n) . We will analyze bounded (in \mathbb{R}) and unbounded cases for (p_n) separately.

(i) Say (p_n) is bounded in \mathbb{R} , i.e., $m < p_n < M$ for all $n \in \mathbb{N}$ for some $m, M \in \mathbb{R}$. Consider the interval

$$(\alpha,\beta) := \left(\frac{3m+M}{4}, \frac{m+3M}{4}\right).$$

Given our paraphrasing of what it means to be cross-bounded, there either exists an N such that for all $n \ge N$, $p_n \ge \alpha$, or there exists an N such that for all $n \ge N$, $p_n \le \beta$. In both cases, we have achieved new bounds for (p_n) for $n \ge N$, namely (α, M) and (m, β) respectively. Notice that $M - a = \beta - m = \frac{3}{4}(M - m)$. Effectively, we have bounded a tail of the sequence in an interval that is three-fourths the size of the interval we started with. If we repeat this process k times (always taking the

$\mathbf{5}$

maximum of all the N's we've chosen), we will bound a tail of (p_n) in an interval of the size $\left(\frac{3}{4}\right)^k (M-m)$. Taking the limit as $k \to \infty$,

$$\lim_{k \to \infty} (M - m) \left(\frac{3}{4}\right)^k = (M - m) \lim_{k \to \infty} \left(\frac{3}{4}\right)^k = 0$$

Thus, for arbitrary $\epsilon > 0$, there will exist k such that $(M - m) \left(\frac{3}{4}\right)^k < \epsilon$, i.e, there will exist a tail of (p_n) where the difference between any two terms is less than ϵ . This implies that (p_n) is Cauchy, and hence, convergent.

- (ii) If (p_n) is not bounded in \mathbb{R} , we will show that it converges to $+\infty$ or $-\infty$. Consider any interval (α, β) . As stated previously, one of these should be true:
 - (a) There exists an N such that for all $n \ge N$, $p_n \ge \alpha$. Since (p_n) is unbounded in \mathbb{R} by hypothesis, and α functions as a lower bound for all $n \ge N$, (p_n) cannot have an upper bound. Thus, for any interval (α', β') , where $\alpha < \alpha' < \beta'$, there must exist an N' such that for all $n \ge N'$, $p_n \ge \alpha'$. Since α' was arbitrary, this shows that $(p_n) \to \infty$.
 - (b) There exists an N such that for all n ≥ N, p_n ≤ β. Since (p_n) is unbounded in ℝ by hypothesis, and β functions as an upper bound for all n ≥ N, (p_n) cannot have an lower bound. Thus, for any interval (α', β'), where α' < β' < β, there must exist an N' such that for all n ≥ N', p_n ≤ β'. Since β' was arbitrary, this shows that (p_n) → -∞.