
Analysis 1 HW 3

1

Definitions
(xn) is a sequence of real numbers satisfying 3xn+1 = x3

n − 2 for all n ∈ N.

Solution
If (xn) → l for some l, then

lim
n→∞

(3xn+1) = lim
n→∞

(x3
n − 2)

=⇒ 3l = l3 − 2

courtesy the algebraic limit theorem. This yields l ∈ {2,−1}.

Now, consider the successive differences:

xn+1 − xn =
x3
n − 3xn − 2

3
(1)

(i) If xi > 2, x3
i −3xi−2 = xi(x

2
i −3)−2 > 2(4−3)−2 = 0. So, xi+1−xi > 0. Therefore,

if x1 > 2, the sequence is increasing and cannot converge to 2 or -1, so it must diverge.

(ii) If xi = 2, xi+1−xi = 0. Thus, if x1 = 2 the sequence is constant at 2, and it converges
to 2.

(iii) If −1 < xi < 2, we make the following claims:

(a) Claim: If −1 < xi < 2, then xi+1 − xi ≤ 0.
It suffices to show that y3 − 3y − 2 ≤ 0 for all y < 2. Consider the expression
t(6− t)− 9, t > 0. If t > 6, it is clear that t(6− t)− 9 < 0. If 0 < t ≤ 6 , t and
6− t are non negative. From the AM-GM inequality, we have 9 ≤ t(6− t) =⇒
t(6− t)− 9 ≤ 0. Thus, t(t(6− t)− 9) ≤ 0 is true for all t > 0. Now, let y = 2− t.
Plugging t = 2− y into the above inequality, we get y3 − 3y − 2 ≤ 0 for all y < 2.

(b) Claim: If −1 < xi < 2, then −1 < xi+1 < 2.

xi < 2 =⇒ x3
i < 8 =⇒ x3

i − 2 < 6 =⇒ x3
i − 2

3
= xi+1 < 2

−1 < xi =⇒ −1 < x3
i =⇒ −3 < x3

i − 2 =⇒ −1 <
x3
i − 2

3
= xi+1

Thus, if x1 lies between −1 and 2, then (xn) is bounded and monotone decreasing. By
the monotone convergence theorem, the sequence must converge, and since it cannot
converge to 2, it must converge to -1.

(iv) If xi = −1, xi+1 − xi = 0. Thus, if x1 = −1 the resulting sequence is constant at -1,
and it converges to -1.
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(v) For xi < −1, we have x3
i − 3xi − 2 ≤ 0 from (iii)(a) (while claimed for −1 < xi < 2,

we proved it for all xi < 2). Thus, for x1 < −1 the sequence is decreasing. Since the
sequence cannot converge to either -1 or 2, it must diverge to negative infinity.

2

Definitions
{(ai, bi)} is a sequence in R2 with ai ≤ bi such that for each i, the closed interval [ai, bi]
contains the closed interval [ai+1, bi+1].
sup an = sup{ak | k ≥ n}.

Solution

(a) To prove:
⋂

i[ai, bi] ̸= ∅.

Proof. Consider the sequences (an) and (bn) independently. Since [ai, bi] always con-
tains [ai+1, bi+1], (an) must be monotone increasing, and (bn) must be monotone de-
creasing. Also, every term of (bn) is an upper bound for (an), and every term of (an)
is a lower bound for (bn). So, α = sup an and β = inf bn must exist.

Claim: α ≤ β.
FTSOC, assume β < α. From the definition of supremum, there must exist an ai1 such
that β < ai1 < α. From the definition of infimum, there must exist a bi2 such that
β < bi2 < ai1 < α. This contradicts the fact that every term of (bn) is an upper bound
for (an). ⇒⇐

Thus, the interval [α, β] is always non empty.

Claim:
⋂

i[ai, bi] = [α, β]
Every element in [α, β] is an upper bound for (ai), and a lower bound for (bi). Thus,
[α, β] ⊂ [ai, bi] for all i, i.e, [α, β] ⊂

⋂
i[ai, bi].

If k ∈
⋂

i[ai, bi], k is an upper bound of (an) and k is a lower bound for (bn). So, k ≥ α
and k ≤ β. Thus, k ∈ [α, β].

Thus,
⋂

i[ai, bi] = [α, β] ̸= ∅.

(b) To prove: |
⋂

i[ai, bi]| = 1 ⇐⇒ limn→∞(an − bn) = 0.

Proof. We know that if a sequence is bounded and increasing, it must converge to the
least upper bound of its range. Thus, (an) → α. Similarly, if a sequence is bounded and
decreasing, it must converge to the greatest lower bound of its range. Thus, (bn) → β.
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Thus, we can say

|
⋂
i

[ai, bi]| = 1

⇐⇒ α = β

⇐⇒ lim
n→∞

(an − bn) = 0

3

Definitions
(an) and (bn) are sequences in R.
sup an = sup{ak | k ≥ n}.

Solution

Lemma 3.1. sup(an + bn) ≤ sup an + sup bn for all n ∈ N

Proof. If sup(an) or sup(bn) is ∞, the inequality is trivially true. Thus, assume sup(an),
sup(bn) ∈ R.
FTSOC, assume sup an + sup bn < sup(an + bn). There must exist ai + bi, i ≥ n such that
sup an + sup bn < ai + bi < sup(an + bn). We know that sup an ≥ ak for all k ≥ n. So, we
have

(sup an − ai) + sup bn < bi

=⇒ sup bn < bi,

which is impossible. ⇒⇐

Lemma 3.2. If (an) → a ∈ R ∪ {∞,−∞}, (bn) → b ∈ R ∪ {∞,−∞}, and an ≤ bn for all
n ∈ N, then a ≤ b.

Proof. If (bn) → ∞, the inequality is trivially true. If (an) → ∞, it must be the case that
(bn) → ∞. Thus, assume a, b ∈ R.
FTSOC, assume b < a. Let ϵ = a−b

2
. Then, there exists an integer N1 such that for all

n ≥ N1, |an − a| < ϵ. Similarly, there exists an integer N2 such that for all n ≥ N2,
|bn − b| < ϵ. Let N be the greater of N1 and N2. Thus, for all n ≥ N , bn ∈

(
3b−a
2

, a+b
2

)
and

an ∈
(
a+b
2
, 3a−b

2

)
, which implies an > bn for all n ≥ N . ⇒⇐

To prove: lim supn→∞(an + bn) ≤ lim supn→∞ an + lim supn→∞ bn, provided the sum on the
right is not of the form ∞−∞.
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Proof. Consider the sequences (sup an + sup bn), and (sup(an + bn)). From Lemma 3.1, we
have sup(an + bn) ≤ sup an + sup bn for all n ∈ N. Also, it is clear the the suprema of tails
of a sequence form a monotone decreasing sequence. Since all sequences are bounded in the
extended reals, it follows these sequences must converge to a value in the extended reals.
Thus, we can use Lemma 3.2:

sup(an + bn) ≤ sup an + sup bn

=⇒ lim
n→∞

(sup(an + bn)) ≤ lim
n→∞

(sup an + sup bn) = lim
n→∞

(sup an) + lim
n→∞

(sup bn)

=⇒ lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn

4

Definitions
(pn) and (qn) are Cauchy sequences in a metric space (X, d).

Solution

To prove: The sequence (d(pn, qn)) converges.

Proof. For any m,n, from the triangle inequality, we have

d(pn, qn) ≤ d(pn, pm) + d(pm, qn)

and

d(pm, qn) ≤ d(pm, qm) + d(qm, qn).

Combining the two, we get

d(pn, qn) ≤ d(pn, pm) + d(pm, qm) + d(qm, qn)

=⇒ |d(pn, qn)− d(pm, qm)| ≤ d(pn, pm) + d(qm, qn).

Let ϵ > 0 be arbitrary. Since (pn) and (qn) are Cauchy sequences, there must exist integers
N1 and N2 such that for all m,n ≥ N1, d(pn, pm) <

ϵ
2
and for all m,n ≥ N2, d(qn, qm) <

ϵ
2

respectively. Let N be the larger of N1 and N2. Thus,

|d(pn, qn)− d(pm, qm)| <
ϵ

2
+

ϵ

2
= ϵ

for all n ≥ N . This implies that the sequence (d(pn, qn)) is Cauchy. In R, a sequence is
Cauchy if and only if it is convergent (to a limit in R).
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Definitions
(pn) is a sequence in R.
For a < b, let ζa,b be the [a, b]-crossing number of (pn).

Solution

To prove: ζa,b ∈ N0 ∀ a < b ⇐⇒ (pn) → p ∈ R ∪ {∞,−∞}.

Proof. We will call a sequence with the property on the left (having finite ζa,b for all a < b)
a “cross-bounded” sequence.

Proof of convergent =⇒ cross-bounded

We will prove the contrapositive: not cross-bounded =⇒ not convergent. If a sequence is
not cross-bounded, ζa,b = ∞ for some a < b. This implies that for all N , there exists dn > N
such that pdn < a, and there exists un > N such that pun > b. This allows us to make the
following deductions:

(i) For ϵ = b − a, there does not exist an N such that for all m,n ≥ N , |pm − pn| < ϵ.
This tells us that (pn) is not Cauchy, which implies (pn) is not convergent in R.

(ii) For all M > a, there does not exist an N such that for all n ≥ N , pn ≥ M . Thus, (pn)
cannot converge to ∞.

(iii) For all m < b, there does not exist an N such that for all n ≥ N , pn ≤ m. Thus, (pn)
cannot converge to −∞.

Proof of cross-bounded =⇒ convergent

We can rephrase the notion of being cross-bounded like so: for every a < b, there either
exists an N such that for all n ≥ N , pn ≥ a, or there exists an N such that for all n ≥ N ,
pn ≤ b. In other words, eventually a becomes a lower bound for tails of (pn), or b becomes
an upper bound for tails of (pn). We will analyze bounded (in R) and unbounded cases for
(pn) separately.

(i) Say (pn) is bounded in R, i.e, m < pn < M for all n ∈ N for some m,M ∈ R. Consider
the interval

(α, β) :=

(
3m+M

4
,
m+ 3M

4

)
.

Given our paraphrasing of what it means to be cross-bounded, there either exists an
N such that for all n ≥ N , pn ≥ α, or there exists an N such that for all n ≥ N ,
pn ≤ β. In both cases, we have achieved new bounds for (pn) for n ≥ N , namely
(α,M) and (m,β) respectively. Notice that M − a = β −m = 3

4
(M −m). Effectively,

we have bounded a tail of the sequence in an interval that is three-fourths the size
of the interval we started with. If we repeat this process k times (always taking the
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maximum of all the N ’s we’ve chosen), we will bound a tail of (pn) in an interval of

the size
(
3
4

)k
(M −m). Taking the limit as k → ∞,

lim
k→∞

(M −m)

(
3

4

)k

= (M −m) lim
k→∞

(
3

4

)k

= 0

Thus, for arbitrary ϵ > 0, there will exist k such that (M − m)
(
3
4

)k
< ϵ, i.e, there

will exist a tail of (pn) where the difference between any two terms is less than ϵ. This
implies that (pn) is Cauchy, and hence, convergent.

(ii) If (pn) is not bounded in R, we will show that it converges to +∞ or −∞. Consider
any interval (α, β). As stated previously, one of these should be true:

(a) There exists an N such that for all n ≥ N , pn ≥ α.

Since (pn) is unbounded in R by hypothesis, and α functions as a lower bound
for all n ≥ N , (pn) cannot have an upper bound. Thus, for any interval (α′, β′),
where α < α′ < β′, there must exist an N ′ such that for all n ≥ N ′, pn ≥ α′.
Since α′ was arbitrary, this shows that (pn) → ∞.

(b) There exists an N such that for all n ≥ N , pn ≤ β.

Since (pn) is unbounded in R by hypothesis, and β functions as an upper bound
for all n ≥ N , (pn) cannot have an lower bound. Thus, for any interval (α′, β′),
where α′ < β′ < β, there must exist an N ′ such that for all n ≥ N ′, pn ≤ β′.
Since β′ was arbitrary, this shows that (pn) → −∞.

6


