Analysis 1 HW 1

Exercise 1

Definitions
f:S—=Tisinvertible <= d ¢g: T — S with fg =1dr and gf = ids.
f: 8 — T isinjective <= f(x1) = f(x2) = x1 =29 Va1, 29 €S.

f:8 — T is surjective <= Vy € T Jz € S with f(x) =y.

(a) P: f is invertible.
Q: f is injective and f is surjective.
To prove P <= @), we need to prove P —= ) and =P — —().
(i) P=@Q
Proof. From P, we have g(f(z)) =2 Vax € S. Consider z1, x5 € S. Then,

g(f(z1)) = a1
9(f(z2)) = 72

Since g is a function, f(z) = f(xs) = z; = 1o.
.. f is injective.

Also from P, f(g(y)) =y Vy € T. For this to be true, every element in 7" must
be in the image of f.

.. [ is surjective.

O
(ii) -P = Q)
Proof.
-P = 3g:T — S with fg =idy and gf = idg
<= Vg:T =S fg#idror gf #idg
< (Jy e T with y ¢ f(9)) or
(31,29 €S, 11 # x9, With f(z1) = f(22) =y, y€T)

<= (f is not surjective) or (f is not injective)

—= Q
O



(b) Let g and h be inverses of f. Then,

flg(z) =z Yo eT
f(h(z)) =2 Yz eT

= fg=rh

If f is invertible, from (a), f is injective. ... g = h, i.e, the inverse of an invertible
function is unique.

() ()

(vi)

Left invertible functions: From (a)(i), f : S — T being left invertible is
equivalent to f being injective. Let g : T' — S be a left inverse of f. While f
being injective guarantees that g exists, g will be unique if and only if f is also
surjective, as otherwise ¢g(y), y € T'\ f(S5) can be arbitrarily defined as any = € S.

Right invertible functions: From (a)(i), f : S — T being right invertible
implies f is surjective. Let g : T'— S be a right inverse of f. ¢ is unique if and
only if f is also injective, as otherwise ¢g(y), y € T can be arbitrarily defined to
be any = € S such that f(z) =y.

Left and right invertible functions: If f is left invertible and right invertible,
it is injective and surjective, which implies f is invertible, which implies f has a
unique inverse, which must be equal to its left and right inverses.

Left cancellable functions: Let hy,hy : T' — S. For f : S — T to be left
cancellable,

(fh = fha) = (1 = ho)
= (f(z1) = f(z2)) = (@1 =1m2) Va,22€5
which implies f is injective. Evidently, the terms “injective”, “left invertible”,
and “left cancellable” are equivalent.

Right cancellable functions: Borrowing hy, hy, and f from (iv), f is right
cancellable if

(hif =hof) = (Iu = hy)
= (lf(z)=hof(x) Vo €S) = (hi(y) =haly) VyeT)
< VyeT Jzxe X with f(x)=y

which implies f is surjective. Evidently, the terms “surjective”, “right invertible”,
and “right cancellable” are equivalent.

Left and right cancellable functions: If f is left cancellable and right can-
cellable, it is injective and surjective, which implies f is invertible.

(d) The claim is no longer true if the condition of the domain and codomain being of finite
cardinality is dropped. For example, f : N — R defined as f(z) = x is injective, and
has a domain and a codomain both of infinite cardinality. However, one is countably
infinite which the other is uncountably infinite, making it impossible for the function
to be surjective.



Exercise 2

Definitions

S is the universal set.

A is the set of all equivalence relations on S.

B is the set of all partitions of S.

[slo ={k €S| (k s)€a},se S, aec Ais the equivalence class of s in a.

f:A— B, f(a) ={[s]la | s € S} maps equivalence relations to partitions.

g:B— A, g(b) ={(n,m) |3 e € b with n,m € e} maps partitions to equivalence classes.

Claim
f and ¢ are inverses of each other.

(i) f(a),a € A is a partition.

Proof. (a) For si,s9 € S;a € A if [s1]a N [S2]a # ¢, there exists x such that x € [s1],
and = € [sg),. This implies (z,s1) € a and (z,ss) € a. Since a is symmetric,
(s1,2) € a, which implies (s1, s2) € a. Thus, [s1], = [$2]a- .. the elements of f(a)
are disjoint.

(b) For every equivalence relation a € A, (s,s) € a Vs € S. Thus, there exists
e € f(a) such that s € e, Vse S. . f(a) is exhaustive.

f(a) is disjoint and exhaustive, which implies that f(a) is a partition of S. O
(ii) g(b),b € B is an equivalence relation.

Proof. (a) Je € b such that s € e Vs € S. Thus, (s,s) € g(b) Vs € S. .. g(b) is

reflexive.
(b) s1,82 € e <= 89,51 € e. Thus, if (s1,82) € g(b), (s2,51) € g(b) Vs1,82 € S. ..
g(b) is symmetric.

(c) s1,82 € e1 and 9,83 € ey for some eq,es € b, sy € e; N ey, which implies that
e1 = €. Hence, If (s1,52) € g(b) and (s2,53) € g(b), (s1,83) € g(b). .. g(b) is
transitive.

g(b) is reflexive, symmetric, and transitive, which implies g(b) is an equivalence relation.
O

(iti) fg = idp

Proof. Let s;,80 € S. Let b € B, so b is a partition of S. From the definition of g,
(s1,52) € g(b) if and only if s; and s, belong to the same part of b. From the definition
of f, de € f(g(b)) such that sy, se € e if and only if (s1,s2) € g(b). Thus,

de € b such that sq1,s9 € €
< (s1,52) € g(b)
<= Jde € f(g(b)) such that s1,s2 € ¢

. flg(b)) =b Vb e B. B



(iv) gf =ida

Proof. Let si,s9 € S. Let a € A. From the definition of f, s; and sy belong to the
same part of f(a) if and only if (s1, s2) € a. From the definition of g, (s1,s2) € g(f(a))
if and only if s; and s, belong to the same part of f(a). Thus,

(51,52) €a
<= Je € f(a) such that s;,s, € ¢
<> (s1,52) € g(f(a))

. g(f(a)) =a Va e A. O

From (iii) and (iv), f is bijective. This implies that there exists a one to one correspondence
between the elements of A and those of B. Thus, defining a partition of S is ”the same as”
defining a equivalence relation on .S in the sense that every partition corresponds uniquely
to an equivalence relation and vice versa.

Exercise 3

Definitions

f:8—=>1T

f(A) ={f(z) [z €A}, ACS
fU(B)={z€S|f(x)eB},BCT

(a) f(Uie[ A;) = Uiel f(A), A, C S

Proof.

ye f(UA1>
iel
<= JA; such that 3z € A; such that f(z) =y
<= JA; such that y € f(4;)

—yelJr

el

(b) f(ﬂiez Ai) # ﬂie] f(Az) A, CS

Proof. Consider an z; in every A;, such that no x; is in (,.; A;. Let f(z;) =y Vi€ 1,
and f(z) # y for all other € S. Clearly, y ¢ f((;c; Ai). However, y € f(A4;) Vie
[ — yeﬂlelf(A,) Il

(c) f(A) # f(A)



Proof. Consider x1,z5 € S such that z; € A and xo ¢ A. Let f(z1) = f(z2) = v.
Now, 25 € A° = y € f(A°). However, 21 € A = y € f(A) = y & f(A)°. O

(d) @) T UierBi) =Uie, f71(Bi), B C T
Proof.

xef_l(UBi)

iel
<= dB; such that f(x) € B;
<= 3B, such that x € f'(B;)

—TE Uf_l(Bz')

el

(ii) fﬁl(ﬂie[ Bi) = ﬂig fﬁl(Bi) B, CcT
Proof.

x € f*1<ﬂBi>

i€l
<~ f(x)eB; Viel
= azefi(B) Viel
1€ ﬂf”(Bi)

il

(iif) f7H(B) = fH(B)
Proof.
z e f7H(B°)
— f(z) € B¢
— f(x) ¢ B
=z ¢ (D)
— rc fYB)°

(&) () FUF(A) # A,

Proof. Consider x1 € A, xo,¢ A, f(x1) = f(x2) =y. y € f(A), which implies
ma2 € f7F(A)). -

(i) f(f71(B)) # B.



Proof. Consider y € T such that y is not in the image of f. Consider B C T
such that y € B. Since there does not exist z in f~'(B) such that f(z) = v,

y & f(f71(B)) =

(f) Parts (b), (c), and (e)(i) relied on f not being injective to provide counterexamples.
If f is injective, it can be proved that f preserves intersections and complements, like

(d)(ii) and (d)(iii). In (e)(ii), f(f~1(B)) = B if f is surjective.



