Analysis 1 HW 1

Exercise 1

Definitions

 $f: S \to T$ is invertible $\iff \exists g: T \to S$ with $fg = id_T$ and $gf = id_S$. $f: S \to T$ is injective $\iff f(x_1) = f(x_2) \implies x_1 = x_2 \quad \forall x_1, x_2 \in S$. $f: S \to T$ is surjective $\iff \forall y \in T \quad \exists x \in S \text{ with } f(x) = y$.

(a) **P:** f is invertible.

Q: f is injective and f is surjective.

To prove $P \iff Q$, we need to prove $P \implies Q$ and $\neg P \implies \neg Q$.

(i) $P \Longrightarrow Q$

Proof. From P, we have $g(f(x)) = x \quad \forall x \in S$. Consider $x_1, x_2 \in S$. Then,

$$g(f(x_1)) = x_1$$

$$g(f(x_2)) = x_2$$

Since g is a function, $f(x_1) = f(x_2) \implies x_1 = x_2$. $\therefore f$ is injective.

Also from P, $f(g(y)) = y \quad \forall y \in T$. For this to be true, every element in T must be in the image of f.

 $\therefore f$ is surjective.

(ii) $\neg P \Longrightarrow \neg Q$

Proof.

$$\neg P \iff \nexists g: T \to S \text{ with } fg = id_T \text{ and } gf = id_S$$
$$\iff \forall g: T \to S \ fg \neq id_T \text{ or } gf \neq id_S$$
$$\iff (\exists y \in T \text{ with } y \notin f(S)) \text{ or}$$
$$(\exists x_1, x_2 \in S, \ x_1 \neq x_2, \text{ with } f(x_1) = f(x_2) = y, \ y \in T)$$
$$\iff (f \text{ is not surjective}) \text{ or } (f \text{ is not injective})$$
$$\iff \neg Q$$

(b) Let g and h be inverses of f. Then,

$$f(g(x)) = x \quad \forall x \in T$$
$$f(h(x)) = x \quad \forall x \in T$$
$$\implies fq = fh$$

If f is invertible, from (a), f is injective. $\therefore g = h$, i.e, the inverse of an invertible function is unique.

- (c) (i) Left invertible functions: From (a)(i), $f : S \to T$ being left invertible is equivalent to f being injective. Let $g : T \to S$ be a left inverse of f. While fbeing injective guarantees that g exists, g will be unique if and only if f is also surjective, as otherwise $g(y), y \in T \setminus f(S)$ can be arbitrarily defined as any $x \in S$.
 - (ii) **Right invertible functions:** From (a)(i), $f : S \to T$ being right invertible implies f is surjective. Let $g : T \to S$ be a right inverse of f. g is unique if and only if f is also injective, as otherwise $g(y), y \in T$ can be arbitrarily defined to be any $x \in S$ such that f(x) = y.
 - (iii) Left and right invertible functions: If f is left invertible and right invertible, it is injective and surjective, which implies f is invertible, which implies f has a unique inverse, which must be equal to its left and right inverses.
 - (iv) Left cancellable functions: Let $h_1, h_2 : T \to S$. For $f : S \to T$ to be left cancellable,

$$(fh_1 = fh_2) \implies (h_1 = h_2)$$
$$\iff (f(x_1) = f(x_2)) \implies (x_1 = x_2) \quad \forall x_1, x_2 \in S$$

which implies f is injective. Evidently, the terms "injective", "left invertible", and "left cancellable" are equivalent.

(v) **Right cancellable functions:** Borrowing h_1 , h_2 , and f from (iv), f is right cancellable if

$$(h_1 f = h_2 f) \implies (h_1 = h_2)$$

$$\iff (h_1 f(x) = h_2 f(x) \quad \forall x \in S) \implies (h_1(y) = h_2(y) \quad \forall y \in T)$$

$$\iff \forall y \in T \quad \exists x \in X \text{ with } f(x) = y$$

which implies f is surjective. Evidently, the terms "surjective", "right invertible", and "right cancellable" are equivalent.

- (vi) Left and right cancellable functions: If f is left cancellable and right cancellable, it is injective and surjective, which implies f is invertible.
- (d) The claim is no longer true if the condition of the domain and codomain being of finite cardinality is dropped. For example, $f : \mathbb{N} \to \mathbb{R}$ defined as f(x) = x is injective, and has a domain and a codomain both of infinite cardinality. However, one is countably infinite which the other is uncountably infinite, making it impossible for the function to be surjective.

Exercise 2

Definitions

S is the universal set.

A is the set of all equivalence relations on S.

B is the set of all partitions of S.

 $[s]_a = \{k \in S \mid (k, s) \in a\}, s \in S, a \in A \text{ is the equivalence class of } s \text{ in } a.$

 $f: A \to B, f(a) = \{ [s]_a \mid s \in S \}$ maps equivalence relations to partitions.

 $g: B \to A, g(b) = \{(n, m) \mid \exists e \in b \text{ with } n, m \in e\}$ maps partitions to equivalence classes.

Claim

f and g are inverses of each other.

- (i) $f(a), a \in A$ is a partition.
 - *Proof.* (a) For $s_1, s_2 \in S$, $a \in A$ if $[s_1]_a \cap [s_2]_a \neq \phi$, there exists x such that $x \in [s_1]_a$ and $x \in [s_2]_a$. This implies $(x, s_1) \in a$ and $(x, s_2) \in a$. Since a is symmetric, $(s_1, x) \in a$, which implies $(s_1, s_2) \in a$. Thus, $[s_1]_a = [s_2]_a$. \therefore the elements of f(a)are disjoint.
 - (b) For every equivalence relation $a \in A$, $(s, s) \in a \quad \forall s \in S$. Thus, there exists $e \in f(a)$ such that $s \in e, \forall s \in S \dots f(a)$ is exhaustive.
 - f(a) is disjoint and exhaustive, which implies that f(a) is a partition of S.
- (ii) $g(b), b \in B$ is an equivalence relation.
 - *Proof.* (a) $\exists e \in b$ such that $s \in e \quad \forall s \in S$. Thus, $(s, s) \in g(b) \quad \forall s \in S$. $\therefore g(b)$ is reflexive.
 - (b) $s_1, s_2 \in e \iff s_2, s_1 \in e$. Thus, if $(s_1, s_2) \in g(b), (s_2, s_1) \in g(b) \quad \forall s_1, s_2 \in S$. \therefore g(b) is symmetric.
 - (c) $s_1, s_2 \in e_1$ and $s_2, s_3 \in e_2$ for some $e_1, e_2 \in b, s_2 \in e_1 \cap e_2$, which implies that $e_1 = e_2$. Hence, If $(s_1, s_2) \in g(b)$ and $(s_2, s_3) \in g(b), (s_1, s_3) \in g(b)$. $\therefore g(b)$ is transitive.

g(b) is reflexive, symmetric, and transitive, which implies g(b) is an equivalence relation.

(iii)
$$fg = id_B$$

Proof. Let $s_1, s_2 \in S$. Let $b \in B$, so b is a partition of S. From the definition of g, $(s_1, s_2) \in g(b)$ if and only if s_1 and s_2 belong to the same part of b. From the definition of f, $\exists e \in f(g(b))$ such that $s_1, s_2 \in e$ if and only if $(s_1, s_2) \in g(b)$. Thus,

$$\exists e \in b \text{ such that } s_1, s_2 \in e$$
$$\iff (s_1, s_2) \in g(b)$$
$$\iff \exists e \in f(g(b)) \text{ such that } s_1, s_2 \in e$$

 $\therefore f(g(b)) = b \ \forall b \in B.$

(iv) $gf = id_A$

Proof. Let $s_1, s_2 \in S$. Let $a \in A$. From the definition of f, s_1 and s_2 belong to the same part of f(a) if and only if $(s_1, s_2) \in a$. From the definition of g, $(s_1, s_2) \in g(f(a))$ if and only if s_1 and s_2 belong to the same part of f(a). Thus,

$$(s_1, s_2) \in a$$

$$\iff \exists e \in f(a) \text{ such that } s_1, s_2 \in e$$

$$\iff (s_1, s_2) \in g(f(a))$$

$$\therefore g(f(a)) = a \quad \forall a \in A.$$

From (iii) and (iv), f is bijective. This implies that there exists a one to one correspondence between the elements of A and those of B. Thus, defining a partition of S is "the same as" defining a equivalence relation on S in the sense that every partition corresponds uniquely to an equivalence relation and vice versa.

Exercise 3

Definitions

$$\begin{split} f:S &\to T\\ f(A) &= \{f(x) \mid x \in A\}, A \subset S\\ f^{-1}(B) &= \{x \in S \mid f(x) \in B\}, B \subset T \end{split}$$

(a)
$$f(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} f(A_i), A_i \subset S$$

Proof.

$$y \in f\left(\bigcup_{i \in I} A_i\right)$$

$$\iff \exists A_i \text{ such that } \exists x \in A_i \text{ such that } f(x) = y$$

$$\iff \exists A_i \text{ such that } y \in f(A_i)$$

$$\iff y \in \bigcup_{i \in I} f(A_i)$$

(b) $f(\bigcap_{i \in I} A_i) \neq \bigcap_{i \in I} f(A_i) A_i \subset S$

Proof. Consider an x_i in every A_i , such that no x_i is in $\bigcap_{i \in I} A_i$. Let $f(x_i) = y \quad \forall i \in I$, and $f(x) \neq y$ for all other $x \in S$. Clearly, $y \notin f(\bigcap_{i \in I} A_i)$. However, $y \in f(A_i) \quad \forall i \in I \implies y \in \bigcap_{i \in I} f(A_i)$.

(c) $f(A^c) \neq f(A)^c$

Proof. Consider $x_1, x_2 \in S$ such that $x_1 \in A$ and $x_2 \notin A$. Let $f(x_1) = f(x_2) = y$. Now, $x_2 \in A^c \implies y \in f(A^c)$. However, $x_1 \in A \implies y \in f(A) \implies y \notin f(A)^c$. \Box

(d) (i) $f^{-1}(\bigcup_{i \in I} B_i) = \bigcup_{i \in I} f^{-1}(B_i), B_i \subset T$ Proof.

$$x \in f^{-1}\left(\bigcup_{i \in I} B_i\right)$$

$$\iff \exists B_i \text{ such that } f(x) \in B_i$$

$$\iff \exists B_i \text{ such that } x \in f^{-1}(B_i)$$

$$\iff x \in \bigcup_{i \in I} f^{-1}(B_i)$$

(ii) $f^{-1}(\bigcap_{i \in I} B_i) = \bigcap_{i \in I} f^{-1}(B_i) B_i \subset T$ Proof.

$$x \in f^{-1} \Big(\bigcap_{i \in I} B_i \Big)$$

$$\iff f(x) \in B_i \quad \forall i \in I$$

$$\iff x \in f^{-1}(B_i) \quad \forall i \in I$$

$$\iff x \in \bigcap_{i \in I} f^{-1}(B_i)$$

Proof.

$$x \in f^{-1}(B^{c})$$
$$\iff f(x) \in B^{c}$$
$$\iff f(x) \notin B$$
$$\iff x \notin f^{-1}(B)$$
$$\iff x \in f^{-1}(B)^{c}$$

(e) (i) $f^{-1}(f(A)) \neq A$.

Proof. Consider $x_1 \in A$, $x_2 \notin A$, $f(x_1) = f(x_2) = y$. $y \in f(A)$, which implies $x_1, x_2 \in f^{-1}(f(A))$.

(ii)
$$f(f^{-1}(B)) \neq B$$
.

Proof. Consider $y \in T$ such that y is not in the image of f. Consider $B \subset T$ such that $y \in B$. Since there does not exist x in $f^{-1}(B)$ such that f(x) = y, $y \notin f(f^{-1}(B))$

(f) Parts (b), (c), and (e)(i) relied on f not being injective to provide counterexamples. If f is injective, it can be proved that f preserves intersections and complements, like (d)(ii) and (d)(iii). In (e)(ii), $f(f^{-1}(B)) = B$ if f is surjective.