
Analysis 1 HW 1

Exercise 1

Definitions

f : S → T is invertible ⇐⇒ ∃ g : T → S with fg = idT and gf = idS.

f : S → T is injective ⇐⇒ f(x1) = f(x2) =⇒ x1 = x2 ∀x1, x2 ∈ S.

f : S → T is surjective ⇐⇒ ∀ y ∈ T ∃x ∈ S with f(x) = y.

(a) P: f is invertible.

Q: f is injective and f is surjective.

To prove P ⇐⇒ Q, we need to prove P =⇒ Q and ¬P =⇒ ¬Q.

(i) P =⇒ Q

Proof. From P , we have g(f(x)) = x ∀x ∈ S. Consider x1, x2 ∈ S. Then,

g(f(x1)) = x1

g(f(x2)) = x2

Since g is a function, f(x1) = f(x2) =⇒ x1 = x2.

∴ f is injective.

Also from P , f(g(y)) = y ∀ y ∈ T . For this to be true, every element in T must
be in the image of f .

∴ f is surjective.

(ii) ¬P =⇒ ¬Q

Proof.

¬P ⇐⇒ ∄ g : T → S with fg = idT and gf = idS

⇐⇒ ∀ g : T → S fg ̸= idT or gf ̸= idS

⇐⇒ (∃ y ∈ T with y /∈ f(S)) or

(∃ x1, x2 ∈ S, x1 ̸= x2, with f(x1) = f(x2) = y, y ∈ T )

⇐⇒ (f is not surjective) or (f is not injective)

⇐⇒ ¬Q
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(b) Let g and h be inverses of f . Then,

f(g(x)) = x ∀x ∈ T

f(h(x)) = x ∀x ∈ T

=⇒ fg = fh

If f is invertible, from (a), f is injective. ∴ g = h, i.e, the inverse of an invertible
function is unique.

(c) (i) Left invertible functions: From (a)(i), f : S → T being left invertible is
equivalent to f being injective. Let g : T → S be a left inverse of f . While f
being injective guarantees that g exists, g will be unique if and only if f is also
surjective, as otherwise g(y), y ∈ T \f(S) can be arbitrarily defined as any x ∈ S.

(ii) Right invertible functions: From (a)(i), f : S → T being right invertible
implies f is surjective. Let g : T → S be a right inverse of f . g is unique if and
only if f is also injective, as otherwise g(y), y ∈ T can be arbitrarily defined to
be any x ∈ S such that f(x) = y.

(iii) Left and right invertible functions: If f is left invertible and right invertible,
it is injective and surjective, which implies f is invertible, which implies f has a
unique inverse, which must be equal to its left and right inverses.

(iv) Left cancellable functions: Let h1, h2 : T → S. For f : S → T to be left
cancellable,

(fh1 = fh2) =⇒ (h1 = h2)

⇐⇒ (f(x1) = f(x2)) =⇒ (x1 = x2) ∀x1, x2 ∈ S

which implies f is injective. Evidently, the terms “injective”, “left invertible”,
and “left cancellable” are equivalent.

(v) Right cancellable functions: Borrowing h1, h2, and f from (iv), f is right
cancellable if

(h1f = h2f) =⇒ (h1 = h2)

⇐⇒ (h1f(x) = h2f(x) ∀x ∈ S) =⇒ (h1(y) = h2(y) ∀ y ∈ T )

⇐⇒ ∀ y ∈ T ∃x ∈ X with f(x) = y

which implies f is surjective. Evidently, the terms “surjective”, “right invertible”,
and “right cancellable” are equivalent.

(vi) Left and right cancellable functions: If f is left cancellable and right can-
cellable, it is injective and surjective, which implies f is invertible.

(d) The claim is no longer true if the condition of the domain and codomain being of finite
cardinality is dropped. For example, f : N → R defined as f(x) = x is injective, and
has a domain and a codomain both of infinite cardinality. However, one is countably
infinite which the other is uncountably infinite, making it impossible for the function
to be surjective.
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Exercise 2

Definitions
S is the universal set.
A is the set of all equivalence relations on S.
B is the set of all partitions of S.
[s]a = {k ∈ S | (k, s) ∈ a}, s ∈ S, a ∈ A is the equivalence class of s in a.
f : A → B, f(a) = {[s]a | s ∈ S} maps equivalence relations to partitions.
g : B → A, g(b) = {(n,m) |∃ e ∈ b with n,m ∈ e} maps partitions to equivalence classes.

Claim
f and g are inverses of each other.

(i) f(a), a ∈ A is a partition.

Proof. (a) For s1, s2 ∈ S, a ∈ A if [s1]a ∩ [s2]a ̸= ϕ, there exists x such that x ∈ [s1]a
and x ∈ [s2]a. This implies (x, s1) ∈ a and (x, s2) ∈ a. Since a is symmetric,
(s1, x) ∈ a, which implies (s1, s2) ∈ a. Thus, [s1]a = [s2]a. ∴ the elements of f(a)
are disjoint.

(b) For every equivalence relation a ∈ A, (s, s) ∈ a ∀ s ∈ S. Thus, there exists
e ∈ f(a) such that s ∈ e, ∀ s ∈ S. ∴ f(a) is exhaustive.

f(a) is disjoint and exhaustive, which implies that f(a) is a partition of S.

(ii) g(b), b ∈ B is an equivalence relation.

Proof. (a) ∃e ∈ b such that s ∈ e ∀s ∈ S. Thus, (s, s) ∈ g(b) ∀s ∈ S. ∴ g(b) is
reflexive.

(b) s1, s2 ∈ e ⇐⇒ s2, s1 ∈ e. Thus, if (s1, s2) ∈ g(b), (s2, s1) ∈ g(b) ∀ s1, s2 ∈ S. ∴
g(b) is symmetric.

(c) s1, s2 ∈ e1 and s2, s3 ∈ e2 for some e1, e2 ∈ b, s2 ∈ e1 ∩ e2, which implies that
e1 = e2. Hence, If (s1, s2) ∈ g(b) and (s2, s3) ∈ g(b), (s1, s3) ∈ g(b). ∴ g(b) is
transitive.

g(b) is reflexive, symmetric, and transitive, which implies g(b) is an equivalence relation.

(iii) fg = idB

Proof. Let s1, s2 ∈ S. Let b ∈ B, so b is a partition of S. From the definition of g,
(s1, s2) ∈ g(b) if and only if s1 and s2 belong to the same part of b. From the definition
of f , ∃e ∈ f(g(b)) such that s1, s2 ∈ e if and only if (s1, s2) ∈ g(b). Thus,

∃e ∈ b such that s1, s2 ∈ e

⇐⇒ (s1, s2) ∈ g(b)

⇐⇒ ∃e ∈ f(g(b)) such that s1, s2 ∈ e

∴ f(g(b)) = b ∀b ∈ B.
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(iv) gf = idA

Proof. Let s1, s2 ∈ S. Let a ∈ A. From the definition of f , s1 and s2 belong to the
same part of f(a) if and only if (s1, s2) ∈ a. From the definition of g, (s1, s2) ∈ g(f(a))
if and only if s1 and s2 belong to the same part of f(a). Thus,

(s1, s2) ∈ a

⇐⇒ ∃e ∈ f(a) such that s1, s2 ∈ e

⇐⇒ (s1, s2) ∈ g(f(a))

∴ g(f(a)) = a ∀a ∈ A.

From (iii) and (iv), f is bijective. This implies that there exists a one to one correspondence
between the elements of A and those of B. Thus, defining a partition of S is ”the same as”
defining a equivalence relation on S in the sense that every partition corresponds uniquely
to an equivalence relation and vice versa.

Exercise 3

Definitions
f : S → T
f(A) = {f(x) | x ∈ A}, A ⊂ S
f−1(B) = {x ∈ S | f(x) ∈ B}, B ⊂ T

(a) f(
⋃

i∈I Ai) =
⋃

i∈I f(Ai), Ai ⊂ S

Proof.

y ∈ f
(⋃

i∈I

Ai

)
⇐⇒ ∃Ai such that ∃x ∈ Ai such that f(x) = y

⇐⇒ ∃Ai such that y ∈ f(Ai)

⇐⇒ y ∈
⋃
i∈I

f(Ai)

(b) f(
⋂

i∈I Ai) ̸=
⋂

i∈I f(Ai) Ai ⊂ S

Proof. Consider an xi in every Ai, such that no xi is in
⋂

i∈I Ai. Let f(xi) = y ∀ i ∈ I,
and f(x) ̸= y for all other x ∈ S. Clearly, y /∈ f(

⋂
i∈I Ai). However, y ∈ f(Ai) ∀ i ∈

I =⇒ y ∈
⋂

i∈I f(Ai).

(c) f(Ac) ̸= f(A)c
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Proof. Consider x1, x2 ∈ S such that x1 ∈ A and x2 /∈ A. Let f(x1) = f(x2) = y.
Now, x2 ∈ Ac =⇒ y ∈ f(Ac). However, x1 ∈ A =⇒ y ∈ f(A) =⇒ y /∈ f(A)c.

(d) (i) f−1(
⋃

i∈I Bi) =
⋃

i∈I f
−1(Bi), Bi ⊂ T

Proof.

x ∈ f−1
(⋃

i∈I

Bi

)
⇐⇒ ∃Bi such that f(x) ∈ Bi

⇐⇒ ∃Bi such that x ∈ f−1(Bi)

⇐⇒ x ∈
⋃
i∈I

f−1(Bi)

(ii) f−1(
⋂

i∈I Bi) =
⋂

i∈I f
−1(Bi) Bi ⊂ T

Proof.

x ∈ f−1
(⋂

i∈I

Bi

)
⇐⇒ f(x) ∈ Bi ∀ i ∈ I

⇐⇒ x ∈ f−1(Bi) ∀ i ∈ I

⇐⇒ x ∈
⋂
i∈I

f−1(Bi)

(iii) f−1(Bc) = f−1(B)c

Proof.

x ∈ f−1(Bc)

⇐⇒ f(x) ∈ Bc

⇐⇒ f(x) /∈ B

⇐⇒ x /∈ f−1(B)

⇐⇒ x ∈ f−1(B)c

(e) (i) f−1(f(A)) ̸= A.

Proof. Consider x1 ∈ A, x2, /∈ A, f(x1) = f(x2) = y. y ∈ f(A), which implies
x1, x2 ∈ f−1(f(A)).

(ii) f(f−1(B)) ̸= B.
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Proof. Consider y ∈ T such that y is not in the image of f . Consider B ⊂ T
such that y ∈ B. Since there does not exist x in f−1(B) such that f(x) = y,
y /∈ f(f−1(B))

(f) Parts (b), (c), and (e)(i) relied on f not being injective to provide counterexamples.
If f is injective, it can be proved that f preserves intersections and complements, like
(d)(ii) and (d)(iii). In (e)(ii), f(f−1(B)) = B if f is surjective.
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