
HW 1 solutions and an addendum
Comments are welcome

A well written solution, besides being precise, correct and complete, should also be properly organized so
that is as easy to follow as possible. For whom? Write for a well intentioned but skeptical reader who knows
as much as you did before you solved the problem, maybe even a little less. There are multiple ways to
achieve this. Find a style that works for you. Here are some suggested good practices. (i) It is better to
write more and give a complete argument than to try to be elegantly concise and leave gaps. (ii) Do not
assume that your reader can easily fill details that you had to think through. (iii) Do not try to impress the
reader, at least at this stage of your career. (iv) Simpler is always better — as long as it is not wrong.

I have tried to illustrate the preceding discussion to some extent for 1(a) and 1(b) below. Parts in blue
indicate setting up the problem, which is free once you understand the meaning of the problem. This is
always desirable to do unless the solution is clear to you and you have enough experience for your confidence
to be a reliable indicator of your understanding. Solutions to some problems (1c, 1d and 3) are sketched.
You may need to work through them and fill in details to make them complete.

1. A function f : S → T is called invertible or an isomorphism of sets if there is a function g : T → S, called
an inverse of f , such that f ◦ g = idT and g ◦ f = idS . (a) Show that f is invertible if and only if f is both
injective (i.e., one-to-one) and surjective (i.e., onto).

Note that being an if and only if statement, part (a) requires two arguments. One of the two is so immediate
that it may be confusing to articulate it precisely. Try to do the rest too as concisely and incisively as you
can. It may help to explore the consequence of just one of the two required equations and prove a subclaim.
Does f ◦ g = idT imply something about f? About g?

Follow-your-nose solution to (a). First suppose f is invertible with g an inverse, so f ◦ g = idT and
g ◦ f = idS . We are asked to show that f is injective and surjective.

(i) To show f is injective, suppose f(x1) = f(x2) where x1, x2 ∈ S. It is enough to show x1 = x2. Applying
g to both sides of f(x1) = f(x2) gives g(f(x1)) = g(f(x2)). As g ◦ f = idS , we have g(f(x1)) = x1 and
g(f(x2)) = x2. Putting together the three relevant equalities shows that x1 = x2.

(ii) To show f is surjective, let y ∈ T . It is enough to find x ∈ S such that f(x) = y. As we know that
f ◦ g = idT , we have f(g(y)) = y. So taking x = g(y) gives f(x) = f(g(y)) = y as required.

Conversely, suppose that f is injective and surjective. We are required to show existence of a function
g : T → S such that f ◦ g = idT and g ◦ f = idS . To define g, take y ∈ T . By surjectivity of f there exists
at least one element in S, say x, such that f(x) = y. Moreover, such x is unique by injectivity of f because
for any element x′ ∈ S such that f(x′) = f(x), injectivity of f forces x = x′. So for a given y ∈ T , we may
define a function g by saying g(y) = the unique element, say x, in S with f(x) = y. Now for any s ∈ S, we
have g(f(s)) = s by the definition of g. For any t ∈ T , we have f(g(t)) = t, again by the definition of g.
This completes the proof of (a).

Another solution to first half of (a). The ideas in the above proof give the following sharper lemma,
as suggested by questions in the note. Lemma: If f ◦ g = idT then f is surjective and g is injective. Proof:
To show injectivity of g, suppose g(x1) = g(x2). Apply f to both sides to get f(g(x1)) = f(g(x2)). Using
f ◦ g = idT , this gives x1 = x2, showing that g is injective. To show f is surjective, let y ∈ T . We will be
done by exhibiting some x ∈ S such that f(x) = y. Define x = g(y). Now f(x) = f(g(y)) = y, as needed.

Returning to the given problem, if f is invertible with g an inverse, then the lemma applies to f ◦ g = idT
to give that f is surjective (and g injective). The same lemma applied to g ◦ f = idS gives that f is injective
(and g surjective).

A shorter rendering of the converse: Suppose f is surjective and injective. Given y ∈ T , define g(y) =
the unique x for which f(x) = y. Such x exists by surjectivity of f and is unique by injectivity of f . By
definition of g, we immediately get f(g(y)) = y for any y ∈ T and g(f(x)) = x for any x ∈ S.



(b) Show that if f is invertible then it has a unique inverse.

Solution to (b). Suppose g1, g2 are inverses to f . Consider h := g2 ◦ f ◦ g1, where the RHS does not
need parentheses because of associativity of function composition. Observe that h = (g2 ◦ f) ◦ g1 = g1 and
simultaneously h = g2 ◦ (f ◦ g1) = g2, showing g1 = g2.

Notes: (1) Notice that we only used f ◦ g1 = idT and g2 ◦ f = idS . So the tiny calculation above shows
more than what was asked, namely the following: if a function has a left inverse and a right inverse, then
the two inverses must be the same and this common function is a two-sided inverse, perforce unique. This is
an utterly standard tidbit that you should see once and then swat away whenever it appears again, as it will
in linear/abstract algebra. (2) Do you have an itch to see the tiny calculation written as g1 = (g2 ◦ f) ◦ g1 =
g2 ◦ (f ◦ g1) = g2 ? Congratulations on sharing that judgment with most textbook authors. Yes, it is a bit
cuter that way, but now the key expression g2 ◦ f ◦ g1 is buried in the middle. It is produced by magic, as it
were, instead of being honestly revealed as the initial brainwave that makes the proof tick. Faux efficiency
at the cost of a bit of transparency?

(c) Results mining the same vein. A function f : S → T is called left invertible if it has a left inverse, i.e., a
function g : T → S with gf = idS . (We’re dropping ◦ from now on.) Which functions have a left inverse?
If a left inverse exists, must it be unique? Repeat for right inverses. What can you say about a function
having a left inverse and a right inverse?

Now call f right cancellable if for any functions h1, h2, the equation h1f = h2f implies h1 = h2. Can you
see an immediate formal connection between being left/right cancellable and left/right invertible? Which
functions are right cancellable? Left cancellable? Both?

Note: This part gets one’s toes wet in formulating statements purely in terms of functions and their com-
position as opposed to using elements. Analogues of such statements and this style of doing business might
become relevant for some of you later on when you deal with categories of objects other than plain sets.
Unless and until that happens, don’t get too fond of such things.

Solution sketch for (c). The lemma in (a) shows that a function with a left inverse must be injective and
a function with a right inverse must be surjective. Converses to both are true by language appropriately
modeled on the last paragraph in the first solution to (a) with the following additional ingredient: appropriate
choices are involved for defining a desired inverse function on certain input elements (the ones not in the
image of an injective f and the ones that have multiple preimages for a surjective f). Uniqueness is false for
both cases. Examples are easy to construct using the additional ingredient. If f has a left inverse g1 and a
right inverse g2 then g1 = g2 is the unique two-sided inverse by note (1) in the solution to (b) above.

If f has a right inverse g, then h1f = h2f implies h1 = h1fg = h2fg = h2 (ha!), showing f is right
cancellable. This part was formal. The converse is also true. (Proof is left for you. How will you set it up?)
All in all we have the following equivalences for functions between sets: surjective⇔ right invertible⇔ right
cancellable. Similarly injective ⇔ left invertible ⇔ left cancellable. For objects with more structure than
sets and appropriate morphisms between them, these issues have to be examined again.

(d) Two-out-of-three property. See informally for yourself that any two of the following properties for a
function between finite sets implies the third: injective, surjective, domain and codomain have the same
finite cardinality. In particular a function between finite sets of equal cardinality is injective if and only if
it is surjective. This is not so exciting for sets but its analogue for vector spaces is quite useful, as you will
see. What happens if we drop the word finite everywhere?

Solution sketch for (d). The claim is “intuitively obvious”. A proper discussion of the proof will require
making precise the meaning of cardinality and some way to deal with finiteness, possibly going down to
developing natural numbers from some logical foundation. For a start, |S| = |T | means by definition that
there exists a bijection between the sets S and T . So a function f : S → T being injective and surjective
directly gives |S| = |T |, finite cardinality or not. For infinite sets, the other two claims are false. Let N be
the set of non-negative integers. The function f(x) = x + 1 from N to itself is injective but not surjective



as 0 is not in the image. Consider a function, again from N to itself, defined by g(x) = x− 1 for x > 0 and
g(0) = some k. Then g is surjective but not injective as g(0) = g(k + 1).

To go a bit further, what should be the meaning of |S| ≤ |T | ? One answer is that there exists an injection
from S to T . Can we equivalently use a surjection instead? Next, |S| ≤ |T | and |T | ≤ |S| should imply
|S| = |T |. Proof? Read more if you are interested.

2. Consider the commonly made statement “Defining an equivalence relation on a set S is the same as
defining a partition of S”. Make the preceding vague statement precise. Then prove the precise statement.
Both underlined notions are defined below. Hint: I almost made this a part of the previous problem.

A partition of S is defined to be a set of pairwise disjoint subsets of S whose union is S, i.e., a partition of
S is a set {Sα|α ∈ I}, where α ranges over some index set I and each Sα ⊂ S, such that

⋃
α∈I Sα = S and

for all distinct α, β ∈ I, one has Sα
⋂
Sβ = ∅.

Recall that a relation on a set S means a relation from S to itself, i.e., a subset of S × S. A relation ∼ on a
set S is called an equivalence relation if it is

• reflexive (i.e., for each x ∈ S, one has x ∼ x),

• symmetric (i.e., whenever x ∼ y, one must also have y ∼ x), and

• transitive (i.e., whenever x ∼ y and y ∼ z, one must also have x ∼ z).

As an aside, recall that changing symmetric to antisymmetric gives the notion of a partial order, a completely
different kind of beast.

Solution. Fix a set S. Claim: there is a bijection between (1) E = the set of equivalence relations on S and
(2) P = the set of partitions of S. (This is the least that is required to justify the vague but potent “is the
same as” in the question.1) To prove the claim we will define functions f : E → P and g : P → E such that
fg = idP and gf = idE . This is enough by problem 1(a). Note that just defining f and g is not enough.

Definition of f . Given an equivalence relation ∼ on S, for any x ∈ S, define the “equivalence class of x” to
be Sx = {y ∈ S|x ∼ y}. Define f(∼) = the collection {Sx|x ∈ S} of subsets of S. (Remember that a set has
no repeats, so the cardinality of f(∼) may look like |S| but instead it is the number of distinct subsets Sx.)

To see that f(∼) forms a partition of S, first observe that by reflexivity of∼, we have x ∈ Sx. So
⋃
x∈S Sx = S.

It remains to show that distinct equivalence classes are disjoint. We show the equivalent contrapositive:
z ∈ Sx

⋂
Sy implies that Sx = Sy. This can be deduced from symmetry and transitivity of ∼ as follows. We

have x ∼ z and y ∼ z. By symmetry z ∼ y. Using transitivity with x ∼ z gives x ∼ y and so y ∼ x. Now
for any w ∈ Sx, we have x ∼ w. Together with y ∼ x we get y ∼ w, showing Sx ⊂ Sy. Similarly Sy ⊂ Sx.

Definition of g. Given a partition {Sα|α ∈ I} of S, define g(this partition) to be the relation ≡ specified
as follows. Declare x ≡ y exactly when x, y belong to the same part, i.e., when there exists α ∈ I such
that x ∈ Sα and y ∈ Sα. Now see that ≡ is reflexive (because

⋃
α∈I Sα = S), symmetric (immediate), and

transitive (because x ≡ y, y ≡ z forces x, y, z to belong to the same unique part as distinct parts are disjoint).

It is “easy to see” that (i) fg = idP and (ii) gf = idE . Proof: (i) Given a partition, first g creates a relation
in which elements are declared related to each other iff they are in the same part and then f simply clubs
together the elements related to each other, recreating the original parts. (ii) Given an equivalence relation,
f assigns to it the set of corresponding equivalence classes. By construction these classes have the property
that all elements in a class are mutually related and no element in a class is related to one in a different class.
Now g declares a relation by the exact same recipe, thus recreating the original relation. (Is this “proof”
valid? My judgment is that once the definitions of f and g are digested, the preceding descriptive proof is
(1) acceptable in our context and (2) maybe even preferable to a proof couched in terms of notation because
the latter may only obscure the simplicity of what is going on. If you disagree, by all means write a more
technical proof. For a start, you will have to name a given partition, which I avoided above.)

1In fact “is the same as” should be interpreted as asserting the existence of a bijection that is natural in a precise sense.
The technical term, which you may learn about later, is functorial isomorphism.



3. Let f : S → T be a function. Recall two definitions: for A ⊂ S, we have f(A) = {f(x)|x ∈ A}, a subset
of T . For B ⊂ T , we have f−1(B) = {x|f(x) ∈ B}, a subset of S. The latter notation does not require f−1

to be a function from T (but can be thought of as defining a function from the power set of T to that of S).
Answer the following with proofs/counterexamples as necessary. While all questions are phrased as asking
for a YES/NO answer, supply the strongest results that you can for all parts.

(a) Is f(A1 ∪A2) = f(A1) ∪ f(A2), i.e., does f preserve finite unions? (Why “i.e.”?) Arbitrary unions?

(b) Does f preserve finite intersections? Arbitrary intersections?

(c) Does f preserve complements, i.e., is f(Ac) = f(A)c? More precisely, is f(S \A) = T \ f(A)?

(d) Repeat the previous questions for f−1.

(e) Is f−1(f(A)) = A ? Is f(f−1(B)) = B ?

(f) For each NO answer, does it change to YES for some functions f other than isomorphisms?

Solution sketch. All unexplained answers can be obtained by following one’s nose.

(a) Yes for both, the first being a special case. (The “i.e.” can be explained formally by induction.)

(b) No for both, e.g., take a constant function and two disjoint subsets of the domain. However f(
⋂
αAα) ⊂⋂

α f(Aα) is always true. Equality holds for all possible collections {Aα} if and only if f is injective.

(c) No, equality always fails for any A when f is not surjective. For surjective f , we have f(Ac) ⊃ f(A)c,
but equality will still fail if f(A) and f(Ac) intersect, which will happen if f(x) = f(x′) with x ∈ A and
x′ /∈ A. So equality will hold precisely when f is surjective and A is a union of fibers of f .

(d) Yes, yes, yes.

(e) No, e.g., take a constant function and A a nonempty proper subset of S. However f−1(f(A)) ⊃ A always
holds. Equality holds for all A if and only if f is injective. In general f−1(f(A)) = union of fibers over
elements of f(A), so for a given f equality holds for those A that are unions of fibers of f .

No, e.g., take a non-surjective function and B = T . In general f(f−1(B)) ⊂ B as f(f−1(B)) = B
⋂
f(S).

So for a given f equality holds for B ⊂ f(S). Equality holds for all B if and only if f is surjective.

Remark about validity of some assertions above only for unions of fibers of f : such considerations become
relevant when one studies quotient topology. Unions of fibers of f are called f-saturated. Can something
interesting be said about an arbitrary f preserving intersections involving f-saturated sets?

Addendum on basic set theory

We will not discuss any more set theory in class for its own sake. Look at Rudin 2.1 to 2.11 to confirm your
familiarity with the basics. You may need to understand the definitions in 2.4, especially of (un)countability,
and the discussion until 2.8. The results in 2.12 to 2.14 on these notions are very interesting and of major
historical/foundational significance, e.g., the number of rational numbers is the same as the number of
integers but is strictly less than the number of real numbers. Why? But such things are NOT of primary
importance for us in this course. We will discuss (un)countability in class if and when it arises. Do not dwell
on the set theory material. Our approach to it is strictly utilitarian. Another reference: appendices F, O
and perhaps P of Erdmann’s ProblemText.

Here is a small exercise in language to work out. See Rudin 2.9 for comparison. A “family of subsets of a set
S indexed by a set I” means, formally speaking, a function from I to the set of subsets of S. In this context
the subset of S that is the image of i ∈ I is simply denoted Si.

(a) Define
⋃
i∈I Si = {x ∈ S | ∃ i ∈ I with x ∈ Si}. What is the meaning of this when I is the empty set?

(b) Similarly define
⋂
i∈I Si. Deduce its meaning when I is the empty set.


