- Start each problem on a **NEW sheet of paper.** There should be no notes asking to look somewhere else. If you forget, at the end you will have to copy on a new sheet of paper. Photograph your answers before submitting. Upload a scan on moodle before leaving.
- Justify *everything* rigorously using definitions and theorems we saw. This needs added emphasis for the topics on this test, which you already "knew" before you set foot in CMI.
- You may use any result we proved and any result in a previous problem (even if you did not do that problem), unless doing so renders the problem trivial. Ask me in case of any doubt.
- All integrals are Riemann integrals (no Stieltjes), i.e., of type $\int_a^b f$ with no $d\alpha$ (i.e., $\alpha(x) = x$).
- 1. (i) Suppose $f : [0,2] \to \mathbb{R}$ is differentiable with f(0) = 0, f(1) = 1, f(2) = 3. Prove that there exists an x with $f'(x) = \sqrt{2}$. What if f is allowed to be nondifferentiable at a single point (but still required to be continuous)?

(ii) For a < c < b show that f is integrable on [a, b] if and only if it is integrable on both [a, c] and on [c, b]. Under these conditions relate the three integrals.

2. Suppose f and g are continuously differentiable (i.e., i.e., f' and g' exist and are continuous) and strictly increasing functions from \mathbb{R} to \mathbb{R} .

(i) For a < b, show the following where you should replace both the ? with appropriate real numbers. Clearly state exactly which part of the hypotheses is used in each step.

$$\int_{a}^{b} f(g(x))g'(x)dx = \int_{?}^{?} f(t)dt$$

(ii) The proof stays valid for (much) weaker hypotheses. Give the weakest hypotheses that you can. Specifically, consider domain, differentiability and monotonicity of either function. Explain fully. Feel free to define \int_n^q with $p \ge q$ if you must, but as always justify.

- 3. For x > 1, define $L(x) = \int_1^x \frac{1}{t} dt$. Note that this is NOT a function we have studied, so you should make no assumptions about it.
 - (i) Calculate $\int_1^y L(x) dx$ where your answer may be in terms of L.
 - (ii) Show the following inequality for $z \in (0, 1]$. Can the inequality be made strict?

$$\left| L(1+z) - \left(z - \frac{z^2}{2} + \frac{z^3}{3} - \dots + (-1)^{n-1} \frac{z^n}{n} \right) \right| \le \frac{z^{n+1}}{n+1}.$$

4. Recall that a non-continuous function may be integrable (e.g., you saw that $f : [0, 1] \to \mathbb{R}$ defined by f(0) = 1, f(x) = 0 for $x \neq 0$ is integrable) or not (you saw an example in the HW) Do not prove any of this. It is only a reminder.

(i) Thomae's function g is defined as follows on [0,1]. Definition: If x is irrational g(x) = 0. For rational input in reduced form $\frac{p}{q}$, define $g(\frac{p}{q}) = \frac{1}{q}$, e.g., $g(0.6) = \frac{1}{5}$. Calculate $\int_0^1 g$ from first principles.

Hint: for any positive integer n, there are only finitely many rational numbers in [0,1] with $g(\frac{p}{q}) \ge \frac{1}{n}$ (all are in the list $0, 1, \frac{i}{j}$ with $0 < i < j \le n$). These can be enclosed in disjoint intervals whose lengths add up to arbitrarily small total ϵ . Choose appropriate ϵ and bound the relevant sum by $\frac{?}{n}$ where ? is a constant.

- (ii) Show that composition of two Riemann integrable functions need not be Riemann integrable.
- 5. (i) Show that the curve $\gamma : [0, 2\pi] \to \mathbb{C}$ given by $t \mapsto \exp\left(2\pi it \sin\left(\frac{1}{t}\right)\right)$ is not rectifiable. Partly informal reasoning is ok.
 - (ii) Suppose $f: (x \delta, x + \delta) \to \mathbb{R}$ and suppose f''(x) exists. Show that the following limit exists.

$$\lim_{h \to 0} \frac{f(x+h) + 2f(x-\frac{h}{2}) - 3f(x)}{h^2}$$