Analysis 1 Test 1

Justify *everything* precisely. You may use any result we proved and any result in a previous problem (even if you did not do that problem), unless doing so renders the problem trivial. Ask me in case of any doubt.

Photograph your answers before submitting. Upload a scan on moodle before leaving.

1. Short independent questions

(a) Let $f: X \to Y$ be a continuous function between metric spaces. Suppose X is compact. Show that f(X) is a compact subset of Y. Deduce that if $Y = \mathbb{R}$, then f(X) has a maximum and a minimum element. This is utterly standard so only a perfect proof will be accepted. You may use the following outline.

Let $\{V_{\alpha}\}_{\alpha \in I}$ be an ... of ..., i.e., each set V_{α} is ... in ... and the union $\bigcup_{\alpha \in I} V_{\alpha} \dots$ As f is continuous, we know that ... Now consider the family ... of subsets of ...

We may apply the hypothesis on the metric space \dots to this family because \dots Therefore \dots

If $Y = \mathbb{R}$, let $M = \sup f(X)$ and $m = \inf f(X)$. Both of these exist because ... In fact $M \in f(X)$ and $m \in f(X)$ because ...

- (b) Show that if $\{x_n\}$ is a Cauchy sequence in \mathbb{R} and $f : \mathbb{R} \to \mathbb{R}$ is a continuous function, then $\{f(x_n)\}$ is also a Cauchy sequence. Show that this is false in general if the domain is a proper subset of \mathbb{R} .
- (c) For a subset E of \mathbb{R} , it is given that for *each* continuous $f: E \to \mathbb{R}$, the set f(E) is bounded in \mathbb{R} . Show that f(E) must in fact be compact for any continuous f. (Hint: compose with something.) Must E itself be compact?
- 2. For a nonempty subset E of \mathbb{R} , define a function $f_E : \mathbb{R} \to \mathbb{R}$ by $f_E(x) = \inf_{p \in E} |x p|$.
 - (a) Sketch the graph of f_E when $E = \{0\} \cup (1, 2]$.
 - (b) Fix a nonempty E. Prove that f_E is continuous. Begin as follows: Let $x \in \mathbb{R}$ and let $\epsilon > 0$.
 - (c) Find the set of all x such that $f_E(x) = 0$. Your answer should be in terms of E.
 - (d) Describe all subsets K of \mathbb{R} such that for each nonempty $E \subset \mathbb{R}$, the set $f_E(K)$ is bounded above. Among these sets, find those K such that for each $E \subset \mathbb{R}$, the set $f_E(K)$ has a maximum element.
- 3. Let $A \subset \mathbb{R}$ be bounded. Suppose you are given a real number y and a sequence $\{p_n\}$ in A with the property that every convergent subsequence of $\{p_n\}$ converges to y. (a) Prove that $p_n \to y$. (b) Show that the result is false (even in a silly way) if the boundedness assumption is dropped.
- 4. Let X be a nonempty metric space. (a) Suppose $p_n \to p$ and $q_n \to q$. Show that $d(p_n, q_n) \to d(p, q)$. (b) Now assume X is compact. Show that there are points x, y such that d(x, y) = the diameter of X.
- 5. (a) Let $K_0 \supset K_1 \supset \cdots$ be a nested sequence of nonempty compact sets in \mathbb{R} . Let d_n = the diameter of K_n . Recall that $\bigcap_n K_n = K$ is nonempty. We know that if the sequence $d_n \to 0$ then $K = \{p\}$ for some $p \in \mathbb{R}$. Prove the converse by showing that if there is e > 0 such that each $d_n \ge e$, then the diameter of K is also at least e.
 - (b) A function $f : \mathbb{R} \to \mathbb{R}$ has the following properties. Show that f is continuous.
 - For any compact set K in \mathbb{R} , the image f(K) is compact.
 - For every nested sequence $K_0 \supset K_1 \supset \cdots$ of compact sets in \mathbb{R} we have $f(\bigcap_n K_n) = \bigcap_n f(K_n)$.
- 6. Consider a function $f:[0,1] \to \mathbb{R}$. The graph of f is the subset $\{(x, f(x)) | x \in [0,1]\}$ of \mathbb{R}^2 . Show:
 - (a) If f is continuous then its graph is compact.
 - (b) If the graph of f is compact, then f is continuous.