HOMEWORK 4 - ALGEBRA I - AUGUST-NOVEMBER 2024

(1) Recall that a linear operator T is *nilpotent* if some positive power T^k is zero. Prove that T is nilpotent if and only if there is a basis of V such that the matrix of T is upper triangular, with diagonal entries zero.

(2) Let

$$M = \begin{bmatrix} A & 0\\ 0 & D \end{bmatrix}$$

be a matrix in block form. Show that M is diagonalizable if and only if A and D are diagonalizable.

(3) Let M be a 2×2 matrix with eigenvalue λ .

- (i) Show that unless it is zero, the vector $(b, \lambda a)^t$ is an eigenvector.
- (ii) Find a matrix P such that $P^{-1}MP$ is diagonal, assuming that $b \neq 0$ and that M has distinct eigenvalues.

(4) Let M be the $n \times n$ matrix given as

0	1	0	0	•••	0]
0	0	1	0	•••	0
0	0	0	1	•••	0
:	÷	÷	÷	·	:
0	0	0	0		1
0	0	0	0	• • •	0

(i) Show that $M^n = 0$ but $M^{n-1} \neq 0$.

(ii) Find all $n \times n$ matrices N over complex numbers that commute with M, i.e. MN = NM.

(5) Consider the complex numbers \mathbb{C} as a 2-dimensional vector space V over the real numbers \mathbb{R} . For any complex number α , consider the function $T_{\alpha}: V \to V$ given by $v \to \alpha v$ obtained by simply multiplying by α . Using the basis 1, ι of complex numbers over real numbers, find matrix of T_{α} . Show that the set $\{T_{\alpha}\}$ satisfies all properties of complex numbers that you know.

(6) If A and B are two square matrices which are both diagonalizable such that AB = BA, then show that there exists an invertible matrix C such that CAC^{-1} and CBC^{-1} are both diagonal.

(7) Let V be a vector space over a field F and let W be a subspace. Define

$$A(W) := \{ f \in \hat{V} : f(w) = 0 \text{ for all } w \in W \}.$$

- (i) Show that A(W) is a subspace of \hat{V} and that if $W \subset U$, then $A(U) \subset A(W)$.
- (ii) Show that dimension of A(W) equals $\dim V \dim W$.
- (iii) Show that A(A(W)) = W.

(8) Let V be an inner product space over \mathbb{R} or \mathbb{C} . Define distance d(u, v) := ||u - v||. Show that it satisfies the triangle inequality.

(9) If $\{w_1, w_2, \ldots, w_n\}$ is an orthornomal set in an inner product space V, show that

$$\sum_{i} |\langle w_i, v \rangle|^2 \le ||v||^2$$

for any $v \in V$.