HOMEWORK 3 - ALGEBRA I - AUGUST-NOVEMBER 2024

- (1) A matrix B is symmetric if $B = B^t$, where t denotes the transpose of the matrix.
- (i) Show that for any square matrix $B, B + B^t$ and BB^t are symmetric.
- (ii) If *A* is invertible, then $(A^{-1})^t = (A^t)^{-1}$.
- (iii) Let A and B be symmetric $n \times n$ matrices. Prove that the product AB is symmetric if and only if AB = BA.

(2) This exercise is about determinants of block matrices.

(i) Show that the determinant of the matrix

$$M = \begin{bmatrix} A & B \\ 0 & D \end{bmatrix}$$

is computed as $\det M = (\det A)(\det D)$, if A and D are square blocks.

(ii) Let a $2n \times 2n$ matrix M be given in the form

$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

Suppose that A is invertible and that AC = CA. Use block multiplication to prove that $\det M = \det(AD - CB)$. Give an example to show that this formula need not hold if $AC \neq CA$. Does the formula hold if A is not invertible but AC = CA?

(3) Determine the smallest integer n such that every invertible 2×2 matrix can be written as a product of at most n elementary matrices.

(4) Let x_1, x_2, \ldots, x_n be variables. Compute the determinant of the matrix

[1	1	1	•••	1	
x_1	x_2	x_3		x_n	
x_1^2	x_{2}^{2}	x_{3}^{2}		x_n^2	
:	:	:	•.	:	
x_1^{n-1}	x_2^{n-1}	x_3^{n-1}		x_n^{n-1}	

(5) Let V denote the space $\mathbb{R}_{n \times n}$ of all $n \times n$ real matrices.

- (i) V is the direct sum of the space of symmetric matrices and the space of *skew-symmetric* matrices, where skew-symmetric matrices are defined as the matrices A satisfying $A^t = -A$.
- (ii) Let W denote the subspace of V of matrices with trace zero. Find $W' \subset V$ a subspace such that $V = W \oplus W'$.

(6) Let V be a vector space over an infinite field F. Prove that V is not the union of finitely many proper subspaces.